版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市惠安县2023-2024学年八上数学期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30° B.45° C.60° D.90°2.已知线段,,线段与、构成三角形,则线段的长度的范围是()A. B. C. D.无法确定3.在平面直角坐标系中,点关于轴对称的点的坐标为A. B. C. D.4.以不在同一直线上的三个点为顶点作平行四边形最多能作()A.4个 B.3个 C.2个 D.1个5.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是()A.10,11,12 B.11,10C.8,9,10 D.9,106.如果二次三项式x2+kx+64是一个整式的平方,且k<0,那么k的值是()A.﹣4 B.﹣8 C.﹣12 D.﹣167.如图,平分,于,于,与的交点为,则图中全等三角形共有()A.2对 B.3对 C.4对 D.5对8.下列算式中,计算结果等于的是()A. B. C. D.9.若三角形两边长分别是4、5,则周长c的范围是()A.1<c<9 B.9<c<14 C.10<c<18 D.无法确定10.在平面直角坐标系中,点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.化简分式的结果是()A. B. C. D.12.二元一次方程2x−y=1有无数多个解,下列四组值中是该方程的解是()A. B. C. D.二、填空题(每题4分,共24分)13.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s甲2__________s乙2(填“>”或“<”).14.已知空气的密度是0.001239,用科学记数法表示为________15.正七边形的内角和是_____.16.一个三角形三边长分别是4,6,,则的取值范围是____.17.如图,中,,,,在上截取,使,过点作的垂线,交于点,连接,交于点,交于点,,则____________.18.点在第四象限内,点到轴的距离是1,到轴的距离是2,那么点的坐标为_______.三、解答题(共78分)19.(8分)已知直线y=kx+b(k≠0)经过点A(3,0),B(1,2)(1)求直线y=kx+b的函数表达式;(2)若直线y=x﹣2与直线y=kx+b相交于点C,求点C的坐标;(3)写出不等式kx+b>x﹣2的解.20.(8分)如图①,点是等边内一点,,.以为边作等边三角形,连接.(1)求证:;(2)当时(如图②),试判断的形状,并说明理由;(3)求当是多少度时,是等腰三角形?(写出过程)21.(8分)车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?22.(10分)已知,,求和的值.23.(10分)先化简,再求值:(m+2),其中m=﹣1.24.(10分)如图是10×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长都是1个单位,线段的端点均在格点上,且点的坐标为,按下列要求用没有刻度的直尺画出图形.(1)请在图中找到原点的位置,并建立平面直角坐标系;(2)将线段平移到的位置,使与重合,画出线段,然后作线段关于直线对称线段,使的对应点为,画出线段;(3)在图中找到一个各点使,画出并写出点的坐标.25.(12分)在平面直角坐标系网格中,格点A的位置如图所示:(1)若点B坐标为(2,3),请你画出△AOB;(2)若△AOB与△A′O′B′关于y轴对称,请你画出△A′O′B';(3)请直接写出线段AB的长度.26.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵,∴点P到BC的距离=AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.【点睛】本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P在过AD的中点E且平行于BC的直线l上是解决此题的关键.2、C【分析】根据三角形的三边关系定理“任意两边之和大于第三边,任意两边之差小于第三边”即可得到的取值范围.【详解】∵,,线段与、构成三角形∴∴故选:C【点睛】考查了三角形三边关系定理,此类求三角形第三边的范围的题目,实际上就是根据三边关系列出不等式,然后解不等式即可.3、D【分析】根据关于轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】点关于轴对称的点的坐标为,故选:.【点睛】此题考查直角坐标系中关于坐标轴对称的点的坐标特点,掌握对称点的特点是解题的关键.4、B【解析】连接不在同一直线上的三点,得到一个三角形,分别以三角形的三边为对角线,用作图的方法,可得出选项.【详解】如图,以点A,B,C能做三个平行四边形:分别是▱ABCD,▱ABFC,▱AEBC.故选B.5、A【解析】先根据多边形的内角和公式(n-2)•180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【详解】设多边形截去一个角的边数为n,则(n−2)⋅180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选A.【点睛】此题考查多边形内角与外角,解题关键在于掌握计算公式.6、D【分析】利用完全平方公式,可推算出.【详解】解:∵,∴,解得k=±1,因为k<0,所以k=﹣1.故选:D.【点睛】本题考查完全平方公式,掌握完全平方公式为本题的关键.7、C【详解】∵平分∴∠BOC=∠AOC又∵,∴∠AEO=∠BDO=90°又∵OC=OC∴∴OD=OE,CD=CE又∵∠BOD=∠AOE∴∴OA=OB,∠A=∠B∴又∵∠ACD=∠BCE∴故答案为C.【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.8、B【分析】根据同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘,等法则进行计算即可得出答案.【详解】A.,所以A不符合题意B.,所以B符合题意C.,所以C不符合题意D.,所以D不符合题意.故选B.【点睛】本题考查的是整式的运算,本题的关键是掌握整式运算的法则.9、C【解析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边,∴5-4<第三边<5+4,∴10<c<18.故选C.10、D【解析】利用各象限内点的坐标特征解题即可.【详解】P点的横坐标为正数,纵坐标为负数,故该点在第四象限.【点睛】本题考查点位于的象限,解题关键在于熟记各象限中点的坐标特征.11、B【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】解:原式==.所以答案选B.【点睛】此题考查了约分,找出分子分母的公因式是解本题的关键.12、D【分析】将各项中x与y的值代入方程检验即可得到结果.【详解】A、把代入方程得:左边,右边=1,不相等,不合题意;
B、把代入方程得:左边,右边=1,不相等,不合题意;
C、把代入方程得:左边,右边=1,不相等,不合题意;
D、把代入方程得:左边,右边=1,相等,符合题意;
故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题(每题4分,共24分)13、>【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,结合气温统计图即可得出结论.【详解】解:由气温统计图可知:乙地的气温波动小,比较稳定∴乙地气温的方差小∴故答案为:>.【点睛】此题考查的是比较方差的大小,掌握方差的意义:方差越小则波动越小,稳定性也越好是解决此题的关键.14、1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.001239=1.239×10-3故答案为:1.239×10-3.【点睛】本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.15、900°【分析】由n边形的内角和是:180°(n-2),将n=7代入即可求得答案.【详解】解:七边形的内角和是:180°×(7-2)=900°.
故答案为:900°.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n-2)是解此题的关键.16、【分析】根据三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,即可得出结论.【详解】解:∵一个三角形三边长分别是4,6,,∴6-4<<6+4解得:2<<10故答案为:.【点睛】此题考查的是根据三角形的两边长,求第三边的取值范围,掌握三角形的三边关系是解决此题的关键.17、【解析】过点D作DM⊥BD,与BF延长线交于点M,先证明△BHE≌△BGD得到∠EHB=∠DGB,再由平行和对顶角相等得到∠MDG=∠MGD,即MD=MG,在△△BDM中利用勾股定理算出MG的长度,得到BM,再证明△ABC≌△MBD,从而得出BM=AB即可.【详解】解:∵AC∥BD,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF⊥AB,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD,∴∠8=∠1,在△BHE和△BGD中,,∴△BHE≌△BGD(ASA),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD⊥BD∴∠BDM=90°,∴BC∥MD,∴∠5=∠MDG,∴∠7=∠MDG∴MG=MD,∵BC=7,BG=4,设MG=x,在△BDM中,BD2+MD2=BM2,即,解得x=,在△ABC和△MBD中,∴△ABC≌△MBD(ASA)AB=BM=BG+MG=4+=.故答案为:.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.18、(2,−1).【解析】根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.【详解】∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2,纵坐标为−1.故点P的坐标为(2,−1).故答案为:(2,−1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.三、解答题(共78分)19、(1)y=﹣x+3;(2)C点坐标为(,);(3)不等式kx+b>x﹣2的解集为x<.【分析】(1)利用待定系数法求直线的解析式;(2)通过解方程组得C点坐标;(3)解不等式-x+3>x-2得不等式kx+b>x-2的解集.【详解】解:(1)根据题意得,解得,∴直线解析式为y=﹣x+3;(2)解方程组得,∴C点坐标为(,);(3)解不等式﹣x+3>x﹣2得x<,即不等式kx+b>x﹣2的解集为x<.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20、(1)证明见解析;(2)是直角三角形,证明见解析;(3)当为100°、130°、160°时,△AOD是等腰三角形.【分析】(1)利用等边三角形的性质证明即可;(2)是直角三角形,利用,得到,再分别求出∠CDO、∠COD即可解答;(3)分三种情况讨论:①②③,即可解答.【详解】(1)∵△ABC和△OBD是等边三角形∴即在△ABO和△CBD中∴(2)直角三角形∵∴∵∴,∴△COD是直角三角形(3)①,需∴∴②,需∴∴③,需∴∴∴当为100°、130°、160°时,△AOD是等腰三角形【点睛】本题考查了三角形的综合问题,掌握全等三角形的性质以及判定定理、等边三角形的性质、直角三角形的性质、等腰三角形的性质是解题的关键.21、(1)这一天20名工人生产零件的平均个数为13个;(2)定额为11个时,有利于提高大多数工人的积极性.【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【详解】解:(1)(个)答:这一天20名工人生产零件的平均个数为13个.(2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人的积极性.当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性.当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性.∴当定额为11个时,有利于提高大多数工人的积极性.【点睛】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.22、a2+b2=19,.【分析】利用完全平方公式变形即可得到,将通分后将ab及a+b的值代入即可计算.【详解】.【点睛】此题考查完全平方公式的变形利用,分式的求值计算.23、﹣2m﹣6,﹣2.【分析】把m+2看成,先计算括号里面的,再算乘法,化简后代入求值.【详解】解:(m+2)=(),,=﹣2(m+3)=﹣2m﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣2.【点睛】本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.24、(1)见解析;(2)见解析;(3)见解析G()【分析】(1)根据A点坐标即可确定原点,建立平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光反射镜市场需求与消费特点分析
- 浙江省温州2024-2025学年高三上学期一模历史试卷(含答案)
- 个人用除臭装置产业规划专项研究报告
- 小学劳动与技术《拧螺丝钉的学问》说课稿
- 电工电子技术(二)学习通超星期末考试答案章节答案2024年
- 市场调研学习通超星期末考试答案章节答案2024年
- 非营利组织高管考核方案
- 市政工程路基填前碾压施工方案
- 钢结构消防设施涂装方案
- 女式内裤产业规划专项研究报告
- 大学生青春期教育
- 仓库卫生和清洁要求
- 《咖啡培训课程》课件
- 肿瘤健康预防知识讲座
- 护理专业人才培养方案
- 中国石油天然气股份有限公司油气田站场目视化设计规定
- 基于豆瓣网电影数据的分析与可视化
- 小学生航海知识讲座
- 心电监护并发症预防及处理
- 甲鱼宣传方案策划
- 脑梗死的护理病历
评论
0/150
提交评论