版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中英文对照外文翻译文献(文档含英文原文和中文翻译)Effectsoftopographyandsurfaceroughnessinanalysesoflandscapestructure–AproposaltomodifytheexistingsetoflandscapemetricsAbstractTopographyandreliefvariabilityplayakeyroleinecosystemfunctioningandstructuring.However,themostcommonlyusedconcepttorelatepatterntoprocessinlandscapeecology,theso-calledpatch-corridor-matrixmodel,perceivesthelandscapeasaplanimetricsurface.Asaconsequence,landscapemetrics,usedasnumericaldescriptorsofthespatialarrangementoflandscapemosaics,generallydonotallowfortheexaminationofterraincharacteristicsandmayevenproduceerroneousresults,especiallyinmountainousareas.Thisbriefmethodologicalstudyprovidesbasicapproachestoincludereliefpropertiesintolarge-scalelandscapeanalyses,includingthecalculationofstandardlandscapemetricsonthebasisof“true”surfacegeometriesandtheapplicationofroughnessparametersderivedfromsurfacemetrology.Themethodsaretestedfortheirexplanatorypowerusingneutrallandscapesandsimulatedelevationmodels.Theresultsrevealthatareaanddistancemetricspossessahighsensitivitytoterraincomplexity,whilethevaluesofshapemetricschangeonlyslightlywhensurfacegeometriesareconsideredfortheircalculation.Insummary,theproposedmethodsprovetobeavaluableextensionoftheexistingsetofmetricsmainlyin“rough”landscapesections,allowingforamorerealisticassessmentofthespatialstructureKeywords:patch-corridor-matrixmodel,neutrallandscapes,digitalelevationmodels,relief,roughnessparameters1.Introduction–The“3D-issue”inlandscapeecology“3D”hasbecomeafrequently-usedterminmanyfieldsofscience,eveninecology.3D-visualisationand3D-graphicshaveundergoneenormousadvancementsintherecentyears.Realisticvisualisationsoflandscapesorcitiesaregainingimportanceinspatialplanningprocesses,forexamplewhentheimpactofconstructionprojectsistobeclarifiedorwhenthedynamicsoflandscapechangeovertimearetobedemonstrated.Also“3D-GIS”isbeginningtoemerge.However,“3D-analysis”inlandscapeecologyandtheexaminationof“3D-patterns”arestillsomewhatneglected,eventhoughelevationandlandsurfacefeaturescanberegardedaskeyelementsinmanyecologicalprocesses.Thus,fromalandscapeecologicalperspective,thereisaneedfor3D-analysisintermsoftheexaminationandcharacterisationofthetopographyoflandscapesandspecificterrainfeatures.Previouspublicationshavetriedtohighlightthenecessitytoincorporateaspectsofthethirddimensionintolarge-scalelandscapeanalyses.Manyauthorshavepointedoutthattopographyisafactorwhichmayplayakeyroleinecosystemfunctioningandstructuring,andwhichinmanycasesisnotsufficientlytakenintoaccount.Theconnectionbetweensurfacecharacteristicsandboththespeciesrichnessandcompositioninvascularplants(asshowninBurnettetal.1998;Davis&Goetz1990;Sebastiá2004)isawell-knownfactthathasfrequentlybeenusedforthedesignofbiodiversitydistributionmodels(e.g.Bolstadetal.1998).Theimpactofreliefonthedifferentiationofanecosystemasawholeandonparticularecologicalfunctionssuchassoilmoisture,temperaturedistribution,thebalanceofsolarirradiation,ormicroclimatehasbeendescribedindetailaswell(Bailey2004;Oke1978;Swansonetal..Bearingthesewell-studiedlinksbetweenterrainfeaturesandecologicalprocessesinmind,onefactappearstobenoteworthy:Sofar,thewell-establishedpatch-corridor-matrixmodel–assuggestedbyForman(1995)–doesnotexplicitlyconsiderthethirddimensioninitsapproachtodescribethespatialarrangementoflandscapes.Itisgenerallyacceptedthattheacknowledgementofthe“effectofpatternonprocess”(Turner1989)constitutestheself-conceptionofmodernlandscapeecology.Buttheestablisheduseoflandscapemetricsforthecharacterisationofgeometricandspatialpropertiesofcategoricalmappatterns(Mc-Garigal2002)holdsaviewofthelandasa“planimetric”surface–aspectsofthree-dimensionalpatterns(topography,elevation)havenotyetexpandedintothisconcept(seealsoBlaschke&Drăguţ2003).Alargenumberoflandscapemetricshasbeendescribedindetailandusedforseveralpurposes,includingspatialplanningorecologicalmodelling.Alotofuser-friendlysoftwareproductsforthecomputationofsuchmetricsonthebasisofeithervectororrasterdataareavailable,e.g.FRAGSTATS(McGarigal&Marks1995),LeapII(Schnekenburgeretal.1997)orV-LATE(Lang&Tiede2003).Butinformationabout3D-featureslikesurfaceroughness,landform,orreliefvariabilitywithinlandscapeelements(“patches”)cannotbemadeaccessibleusingthesemeasures.Moreover,onemayevenyielderroneousresultsfromthecalculationoflandscapemetrics,sincethebasicgeometries(area,perimeter)ofpatchesanddistancesbetweenthemaregenerallyunderestimatedinplanimetricobservationsbyneglectingtheunderlyingrelief.Thesediscrepanciesbetweenthepatch-corridor-matrixmodelandtheactualconditionswithinlandscapescanberegardedasamajordrawbackoftheconcept,especiallyinmountainousregionsorinareasexhibitingacomplexterrain.Figure1providesavisualrepresentationoftheeffectsthatreliefmayhaveontheparameteroutputofcommongroupsoflandscapemetrics.Forexample,itisapparentthatforareaordistancemetrics,adefinitetendencytowardshighervaluescanbeexpectedwhensurfacecomplexityistakenintoaccount.Geomorphologyoffersalargesetofparameterstodescribethelandsurfaceandtoclassifythegeorelief(seeDikau&Schmidt1999;Evans1972;Pike2000;Wilson&Gallant2000).However,measuresofcurvature,aspect,slope,orcombinedparameterssuchaswetnessindicesareonlyoflimitedusewhenonetriestocharacterisethespatialpatternoflandscapesusingcategoricalmaps.Thesemeasuresingeneralrelatetocatchmentareasanddiscretelandformelements,ratherthantothe“patches”thatcommonlandscapemetricsareappliedto;acompatibilitybetweentheseapproachescannotbetakenforgrantedineverycase.Figure1:Commonlandscapemetricsgroupsusedinthepatch-corridor-matrixmodelandtheeffectsofunderlyingterrain(upperpartredrawnaccordingtoWiensetal.1993).Othertechniquestoincorporatesurfacefeaturesintolandscapeanalyseshavebeenproposed.Forexample,Beasom(1983)hassuggestedasimplemethodforassessinglandsurfaceruggednessbasedontheintersectionsofsamplepointsandcontourlines.MoreelaborateproposalstoincludetopographiccharacteristicsintoanalysesoflandscapepatternandofvegetationdistributionshavebeenmadebyDorneretal.(2002).Simplemoving-windowalgorithmsforestimationsofthe“concavity/convexity”ofrasterpixelsindigitalelevationmodels(DEM)havebeendevelopedbyMcNab(1992)andBlaszczynski(1997).Whileanapplicationoftheseapproachesforspecialcasestudiesandparticularthematiccontextsmaybeveryvaluable,integrationintothepatch-corridor-matrixmodelhasnotbeenachievedyet.Meanwhile,thetechnologicalprogressinthefieldofremotesensinghasledtoarapidimprovementinthequalityofDEMs.EspeciallyLiDAR(“lightdetectionandranging“)measurementsprovidehigh-resolutionelevationdataofthelandsurface.Theycanaccuratelyestimateattributesofvegetationstructureandshouldthereforebeofparticularinteresttolandscapeecologists(Lefskyetal.2002).Firstattemptstoderive3DlandscapemetricsfromLiDARdatahavealreadybeenmadeearlier(e.g.Blaschkeetal.2004).Allthesenotesonthe“3D-issue”inlandscapeecologyandtheshortcomingsintheanalysisofimportantsurfacefeaturesmarkthestartingpointforthestudyathand.Themainpurposeofthispaperistopresentsomebasicprinciplesonhowtosolvetheproblem,basedontherecognitionofthediscretelandunitasacentralconceptinlandscapeecologicalhypotheses(Zonneveld1989).Theterm“3D”isusedinthiscontext,eventhoughdigitalelevationmodelsactuallyrefertoa“2.5D”representationoftherealworld,withonez-valueassociatedwitheachx,y-coordinate.Inmostcases,however,DEMscanbeconsideredassufficienttoprovideanapproximationofthetruesurfaceconditions.Thismethodicallyorientedarticleattemptstorevealandquantifytheeffectsthatthevariabilityandroughnessofthelandsurfacemayhaveontheparametervaluesofcommonlandscapemetricsandtriestopresentafewsuitableworkaroundsforthisissue.Theseincludemodificationalgorithmsforcommonlandscapemetricsaswellastheintroductionofalternativemeasurestocapturesurfaceroughness.Thesemethodsaremainlyexemplifiedusingneutrallandscapemodels.2.Methods–Consideringterraincharacteristicsinthepatch-corridor-matrixmodelTwobasicapproachesforthefirststepstowards3D-analysisoflandscapestructureareproposedinthispaper:Thefirstonecomprisesdifferentcorrectionalgorithmsforstandardarea,shapeanddistancemetrics.Thesecondoneisbasedontheaggregationofheightinformationintheformofsimple“surfaceroughness”parameters.2.1AdjustingstandardlandscapemetricsThesimplestandmostobviousapproachtoincorporatethethirddimensionintolandscapeanalysesistoadjusttheexistingsetofmetricsandtomitigatethesourceoferrorassociatedwiththeplanimetricprojectionofslopes.SuchtechniqueshavebeenproposedearlierbyDorneretal.(2002),whosuggestedtocomputethetruesurfaceareaofeachrastercellinaDEMbythequotientprojectedarea/cos(slope)andtoapproximatethetruedistancesbetweenadjacentcellsbysimpleapplicationofthePythagoreanTheoremusingEuclideandistanceanddifferencesinelevation.However,asystematicintegrationintocalculationalgorithmsoflandscapemetricswasnotpresented.Inthispaper,amoredetailedapproachischosentocalculatetruesurfacearea,basedonthefindingsofJenness(2004).Thetechniqueisbasedonamovingwindowalgorithmandestimatesthetruesurfaceareaforeachgridcellusingatriangulationmethod(Figure2).Eachofthetrianglesislocatedinthree-dimensionalspaceandconnectsthefocalcellwiththecentrepointsofadjacentcells.ThelengthsofthetrianglesidesandtheareaofeachtrianglecaneasilybecalculatedbymeansofthePythagoreanTheorem.Theeightresultingtrianglesaresummeduptoproducethetotalsurfaceareaoftheunderlyingcell.Thismethodispreferredsinceitcanbeexpectedtoprovidemoreaccurateresults;incontrasttotheapproachmentionedabove,alleightneighboursofthepixelofinterestareincludedinthecalculation,insteadofonlytheonedefiningtheslopeangle.Figure2:Methodtodeterminetruesurfaceareaandtruesurfaceperimeterofpatches.Truesurfaceareaofthefocalrastercellisobtainedbyaddingtheeightshadedtriangles,truesurfaceperimeterbysummationoftheeightboldlinesegments(figureredrawnaccordingtoJenness2004).Additionalcomputationstepshavetobeconductedtoobtainthetruesurfaceareanotonlyforeachrasterpixelbutforeachpatchinalandscapeinordertoincludethesenewgeometryvaluesintothecalculationofcommonlandscapemetrics.Arasterfilecontainingthepatchstructureoftheconcerninglandmosaicisoverlaidwiththecorrespondingelevationmodel.Thensurfaceareavaluesofthepixelsrepresentingeachpatcharesummedup.Equalresolutionandextentofthepatchfileandtheelevationmodelarepresumed.Jenness’methodisalsoadaptedinordertocalculaterealisticsurfaceperimetersofeachpatch.Thisisdonebysimplyaddingupthelinesegmentsformingthesurfaceedgeoftherasterpixels(seeboldlinesinFigure2)incasetheyarepartofthepatchboundary.Amoreintricateprocedureisneededforthecalculationofthetruesurfacedistancesbetweenpatchesofthesameclass,thatisthe3D-equivalenttothe“EuclideanNearestNeighbour”measureasusedintheFRAGSTATS-setofmetrics(seeMcGarigaletal.2002).Thequestioncanbereferredtoasaso-called“shortestpathproblem”,forwhichvarioussolutionsaredescribedinliterature,eachofthemhavingitsassetsanddrawbacks(e.g.Cormenetal.2001).Inthepresentcase,aweightedgraphG(V,E)isconstructed,witheachrastercellrepresentingonevertexVandeachconnectionlinebetweenthecellsformingoneedgeEofthegraph.TheweightassociatedtoeveryedgeiscalculatedbyusingthePythagoreanTheoremtoapproximatethe3D-distancebetweencentrepointsofadjacentrastercells.Afterthesesteps,asuitablealgorithmneedstobeappliedtothegraphinordertodeterminetheshortestpathbetweenabordercellofthefocalpatchandtheclosestbordercelloftheclosestpatchofthesameclass.Inthepresentcase,aformoftheDijkstra-algorithmischosen,asitisexpectedtoprovidegoodestimatesfortheshortestpath(Chen2003).Thismethodisbasedonanundirectedcircularsearchprocedure.Consideringtheproblem,thevastcomputationeffortbecomesevident:fora1000x1000DEM,theconstructedgraphconsistsof1*106vertices,aggregatedtoformanumberof“nodes”(definedbythepatchespresent),andapprox.4*106edges.Thisimpliesthatatrade-offbetweencomputationtimeandcalculationresultshastobemade,withtheDijkstra-methodprovidinganacceptablecompromisebetweenthesetwofactors.Onthebasisofthesetruesurfacegeometries,anumberofbasiclandscapemetricscanbecalculatedandbecomparedtotheirplanimetric2D-equivalents.ThesemetricsarelistedinTable1.Table1:Selectedstandardmetrics,calculatedusingboth2D-and3D-geometries.2.2CharacterisingsurfaceroughnessAsoutlinedinthefirstchapter,surfaceroughnessmaybeacriticalissueinassessinganumberofecologicalfunctions,notablyclimaticconditionsorerosionprocesses.Therefore,simpleandstraightforwardmeasurestocaptureroughnesscharacteristicsareneededtohelpimprovetheaccuracyoflandscapeanalyses.Themostself-evidentapproachinthiscontextmaybetosimplycalculatetheratiooftruesurfacearea(asdescribedintheprevioussection)andplanimetricarea.Thismayprovideafirstestimateoftheoveralldeviationofthepatchsurfacefromaperfect2D-plane.Completelyplanepatchesconsequentlyresultinanarearatio-valueof1.Otherconceptsforthecharacterisationofsurfacefeaturessuchasroughnessareprovidedbysurfacemetrology(Stoutetal.1993).Thisscientificfielddealswiththecharacterisationofmanufacturedsurfaces(forexampleopticlenses)onamicroscopicscale.Whenthesemeasuresaretransferredtoalargerscale,theymaybeapplicabletoecologicalproblemsandanalysesoflandscapestructureaswell.Theindex“AverageSurfaceRoughness”(Ra)appearstobethemost-frequentlyusedparameterfromthissetandatthesametimetheonewiththeleastcomputationeffort.Raisusuallycalculatedasthemeanabsolutedepartureofapatch’selevationvaluesfromthemeanplane.Unlikethe3D/2Darearatio,thisindexisnotdimensionlessbutmaintainstheunitsoftheDEM.Therefore,itcanbeconsideredasanabsolutemeasureofsurfaceroughness.AmodificationofRaisRq,the“Root-Mean-SquareDeviationoftheSurface”,whichisastandardisedversionoftheformer.Theseandothermeasuresforthecharacterisationofthelandsurfaceusingsurfacemetrology-indicesaregiveninTable2,eventhoughnotallofthemareexplicitlycoveredindetailinthisstudy.RaandRqwerechosenforthisstudysincetheyarewidely-usedindisciplineslikematerialsscienceandarerathereasilyinterpretable.TheimplementationofthemethodsdescribedwascarriedoutusingboththeMATLABpackage(Math-Works2005)andanArcGIS-extensionprogrammedinC#usingthe.NET-environmentandtheArcObjectsclasslibraries(ESRI2005).2.3CasestudyusingneutrallandscapemodelsAtthispoint,acoupleofquestionsmayarise:Isitactuallynecessarytoincludeelevationandtopographyrespectivelyintoanalysesoflandscapestructure?Isthereanysignificantdifferenceatallbetweenthe2D-and3D-formsoflandscapemetrics?Dosimpleroughnessparameterstellusanythingaboutthereliefvariability?And,whichmayevenbethemostimportantone:istheadditionalcomputationeffortworthbeingcarriedout?Inordertohelpansweringthesequestionsandtomakevalidstatementsabouttherelevance,sensitivityandexplanatorypoweroftheproposedmethods,theabovementionedindiceswereappliedtoasetofneutrallandscapemodelsandsimulatedDEMs.Neutrallandscapemodelshaveprovedtobeavaluablemeansfortherepresentationofrealisticconditionsorforthereflectionofextremestatesoflandscapesystems(Gardner&Urban2007;Gardneretal.1987;Lietal.2004).Thisturnedouttobeuseful,asneutrallandscapesallowtomirrorlandscapesectionsofdifferentstructuring,whereassimulatedelevationmodelsmayreflectvariableheterogeneityoftheunderlyingterrain.Inthegivencase,thesoftwareSimmap(Saura&Martínez-Millán2000)wasusedtocreatelandscapeswithanextentof1000x1000rastercells(withanassignedhorizontalresolutionof1x1m)andthreelanduseclassesofequalsurfacepercentages.Theinitialprobabilitypwasalteredtoproducetwodifferenttypesoflandscapestructuring.Similarly,theprogrammeLandserf(Wood2005)wasappliedtoproduceelevationmodelsofvariousreliefvariabilities.Moreprecisely,theparameter“fractaldimension”(FD)wasalteredtoyieldthreeDEMsofincreasing“roughness”.DetailsaboutthetestlandscapesandtheDEMscanbederivedfromFigure3.Table2:Examplesofsomesimpleindicestoderiveinformationaboutsurfacecharacteristicsandtheircalculationformulae(PrecisionDevices1998).Figure3:CombinationsofneutrallandscapemodelsandsimulatedDEMs.3.Results–TheeffectoftopographyonselectedlandscapemetricsThesixlandmosaic/elevationmodel-combinationsweresubjectto3D-landscapeanalysisaccordingtotheoutlinedtechniques.Thearithmeticmeanoftheindexvalueswascalculatedforallthepatchespresentinthelandscapesinordertoillustratetheeffectoftheunderlyingreliefintheexaminedsituations(planimetricconditionsaswellasDEMswithfractaldimension2.1,2.5and2.9respectively).TheresultsaredisplayedinthediagramsinFigure4.Somefundamentalfindingscanbenoted.Forthemeanpatchareaandmeanpatchperimeter,thereisacleartrendtowardshighervaluesforincreasingreliefvariability.Thisholdstrueforboththehighlyfragmentedlandscape(p=0.54)aswellasforthemosaicdominatedbyfewerandlargerpatches(p=0.58).ThedifferencesbetweentheplanimetriccaseandeachofthethreesimulatedDEMsprovetobesignificantwhencomparedusingat-testforpairedsamples.Asexpected,acleardependenceofthevaluesontheterrainvariabilityandtheabilityoftheappliedmethodstocapturethiseffectcanbedemonstrated.Forthedistancemeasure“NearestNeighbour”,asimilareffectisevident.Thereisaclearincreaseforthemeandistancebetweennearestneighboursofthesameclasswhenthereliefisbecoming“rougher”andmorevariable.Forthegroupoftheshapemetrics,thefindingsarenotasclearandnotaseasilyinterpretable.FortheFractalDimension(FRAC),thedifferencesbetweenthe2D-versionandits3D-equivalentappliedtothethreeDEMsareratherlowandalmostneglectable,whilestillslightlyincreasingwithterrainroughness.Perimeter-AreaRatio(PARA)showsitstypicalsize-dependency(McGarigaletal.2002),andthereforethisindexhastobecarefullyinterpretedduetothegrowingmeanpatchsizewithincreasingterrainroughness.Thus,adefinitestatementabouttheeffectsofterrainontheoutputofthisparametercanhardlybemade.Allinall,thisparameterappearstobelargelyindependentofterrainroughness.AstheShapeIndex(SHAPE)correctsforthesizeproblemofthePerimeter-AreaRatioindex,itmaybethemostinterestingonetohaveacloserlookatwithinthegroupoftheshapemetrics.ThedifferencesofthemeanShapeIndexforthefourreliefsituationsexaminedseemtoberathersmallforthe2D-caseandthefirsttwoelevationmodelswithanabruptriseforthemostvariableelevationmodel.Thisagainisthecaseforbothofthelandscapemosaicsconsidered.Ofcourse,thisriseisuptoacertainextentproportionaltotheincreaseinmeanpatcharea(seeabove),asSHAPEtendstoincreasewithgrowingarea,evenifperimeterincreasesforthesamefactoratthesametime.ThiscanbederivedfromthecalculationformulaforSHAPE.Finally,thetwosimpleroughnessparameterscalculated,AverageSurfaceRoughness(Ra)andRoot-Mean-SquareDeviationoftheSurface(Rq),wereappliedtohetestlandscapes.Theresultsindicateacleardependencyoftheparameteroutputsontheunderlyingreliefwithaverysimilarbehaviourofthetwoindicesandsimilaroutputsforthetwodifferentlandscapemosaics.4.Discussion–OntherelevanceoftheproposedmethodsThisshortmethodologicalexaminationissupposedtoclarifytheeffectoftopographyandsurfaceroughnessonafewcommonlandscapemetrics.Moreover,somebothsimpleandfundamentalapproachestoconsidertheseeffectsarepresented.Patchareaandperimeterexhibitastrongconnectednesstothevariabilityoftheunderlyingterrain.Theeffectsmaynotbeasdistinctunderreal-worldconditions.ButthesimulatedlandscapemodelsandDEMsclearlydemonstratethataconsiderationoflandscapemosaicsaspurelyplanimetricsurfacesandtheircharacterisationusing2D-landscapemetricsmaynotbesufficientineverycase,especiallywhenterrainishighlyvariable.Whenonetriestocharacteriselandscapesinthesecases,theapplicationofcorrectedmetricsasproposedinthispapermaybeadvisable.Thesameholdstruefordistancemeasures.Thesemetricsmayhaveacriticalrelevancee.g.inspecies-centredhabitatanalyses.Ascanbeseenfromtheresultspresentedhere,theeffectofthereliefonthe“true”surfacedistancesbetweenpatchesshouldnotbeneglectedinroughterrain.Thiseffectmaybeexaggeratedbytheapplicationofthesimulatedlandscapes,evenifthepurposeistorevealthefundamentalrelationshipbetweendistanceandtopographyandtoprovideatechniquetoimprovethecalculationofsuchdistancemeasures.StatementsregardingshapeindiceslikePARA,FRACorSHAPEarenotasconcise.Thesemetricsdoreacttotheterrain,butabsolutedifferencesbetweentheexaminedreliefsituationstendtobelowandthetrendisnotasobviousforallofthesemeasuresasisthecaseforarea,perimeteranddistancemeasures.Onereasonforthismaybethesimplefactthatinthecalculationalgorithmsforthesemetrics,parametersofthepatchgeometriesappearbothaboveandbelowthefractionline.Therefore,whendividingforexample3D-perimeterby3D-area(bothhavinglargervaluescomparedtotheir2D-equivalents),thedifferencesbetweenthe2Dandthe3D-approachmaysimplylevelouttoacertainextent.Finally,theresultsrevealthattheanalysisofsurfaceroughnessmayserveasavaluableinstrumenttoprovidehighlycondensedinformationaboutthetopographiccharacteristicsofpatches.AsbothRaandRqarecloselyconnectedtotheinitialroughnessparameteroftherespectiveDEMs(i.e.theirfractaldimensionFD),theycanberegardedasagoodextensionofcommonlandscapemetricstowardsthethirdspatialdimension,especiallyastheircalculationalgorithmsareratherstraight-forwardandcanbeeasilyintegratedintothepatch-corridor-matrixmodeloflandscapes.Moreover,theresultsfromtheseparametersareeasilyinterpretable.Toassesstheinfluenceoflandscapeconfigurationandpatchstructuringonthemetricsoutput,thetwochosenmosaicswithaninitialprobabilitypweresupposedtoserveasarepresentationofdifferentstructuralconditions.Itturnsoutthatthegeneraltrendsinindexbehaviourforincreasingfractaldimensionoftheunderlyingreliefaregenerallythesame.Thedistancetothenearestneighbourinthesameclasstendstobelargerforp=0.58,becauseonaveragelargerpatchesofotherclasseshavetobecrossed.Thisindicatesthattheapplicationofthecorrectionalgorithmfordistancecalculationsmaybeparticularlyvaluableincoarse-grainedlandscapeswithlargereliefvariability.Asidefromthesefindings,preliminarystudiescarriedoutapplyingtheproposedmethodstoreal-worlddatahaveshownthatlargepatchesingeneralleadtosomemitigationofterraineffectsonlandscapemetrics,asoftenlandscapeelementscompriseboth“flat”and“rough”areas.Thiscircumstanceisnotreflectedtothesamedegreebytherelativelyhomogeneoussimulatedelevationmodelsusedinthisstudy,wherethequantificationofterrainroughnessratherthangenerallandscapeconfigurationwasthemainfocus.Theresultssuggestthattheproposedmethodsmayexhibitalargepotentialformanyecologicalproblems.Sinceespeciallymeasuresforhabitatareaandhabitatisolationorfragmentationarekeyvariablesinmanyspecies-centredanalyses,theusageofcorrectionalgorithmsforthesegeometriesappearstoofferthepossibilityofimprovedresults(forexamplesdealingwiththesemeasuresseeBennett2003;Fahrig1997;Kraussetal.2005;vanDorp&Opdam1987).Figure4:Diagramsdisplayingthearithmeticmeansand95%-confidenceintervalsaroundthemeanvaluefortheselectedindices;eachindexwascalculatedforthetwotestlandscapes(displayedinblueandgreenrespectively)combinedwitheachofthethreeelevationmodelsaswellastheplanimetriccase.5.ConclusionsandoutlookThefindingspresentedinthispaperindicatethatthepatch-corridor-matrixmodelastheprevailingconcepttoperceiveanddescribelandscapesmaynotsufficeincaseswheretopographicandmorphologicfeaturesofthelandsurfaceneedtobetakenintoaccount.Astopographyplaysacrucialroleinmanyecologicalprocesses,simplemethodsandtechniquesforitsassessmentareneeded.Weproposesomestraightforwardapproachesthatenablelandscapeecologiststoaccountfortheeffectsofreliefandlandformintheiranalyses.Thesuggestedframeworkfortheadjustmentofstandardlandscapemetrics,thusconvertingthemto3D-metrics,maybeappliedt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《IBMPC微型计算机》课件
- 《渐进镜片销售培训》课件
- 2024年新高一数学初升高衔接《指数函数及其性质》含答案解析
- 教学培训课件
- 水上运载工具市场发展现状调查及供需格局分析预测报告
- 【语文课件】怎样写板报稿
- 空间冷却装置产业运行及前景预测报告
- 存储器板市场洞察报告
- 初中英语课件下载
- 《统计学作业题目》课件
- 2024中小学生国防教育与爱国主义情操培养合同
- 电力工程施工售后保障方案
- 2024至2030年中国美式家具行业投资前景及策略咨询研究报告
- 俯卧位心肺复苏
- 氢气中卤化物、甲酸的测定 离子色谱法-编制说明
- 2024年经济师考试-中级经济师考试近5年真题集锦(频考类试题)带答案
- 艺术哲学:美是如何诞生的学习通超星期末考试答案章节答案2024年
- 关于体育健身的调查问卷
- 2024年重庆市高考地理真题(解析版)
- DB3206T 1084-2024老年人能力评估师培训工作指南
- 2024年江苏省南通市中考英语试卷(含答案解析)
评论
0/150
提交评论