项目风险管理分析中英文对照外文翻译文献_第1页
项目风险管理分析中英文对照外文翻译文献_第2页
项目风险管理分析中英文对照外文翻译文献_第3页
项目风险管理分析中英文对照外文翻译文献_第4页
项目风险管理分析中英文对照外文翻译文献_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE1PAGE1PAGE1中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:ProjectRiskAnalysisChapter1Introduction1.1AboutthiscompendiumThiscoursecompendiumistobeusedinthecourse“Risikostyringisprojector”.Thefocuswillbeonthefollowingtopics:•Riskidentification•Riskstructuring•Riskmodelinginthelightofatimescheduleandacostmodel•RiskfollowsupWewillalsodiscusselementsrelatedtodecisionanalysiswhereriskisinvolved,anduseoflifecyclecostandlifecycleprofitmodels.Thecoursecompendiumcomprisesalargenumberofexercises,anditisrecommendedtodomostoftheexercisesinordertogetagoodunderstandingofthetopicsandmethodsdescribed.AseparateMSExcelprogram,pRisk.xlshasbeendevelopedinordertoassistnumericalcalculationsandtoconductMonteCarlosimulation.1.2DefinitionsAleatoryuncertaintyVariationofquantitiesinapopulation.Wesometimesusethewordvariabilityratherthanaleatoryuncertainty.EpistemicuncertaintyLackofknowledgeaboutthe“world”,andobservablequantitiesinparticular.DependencyTherelationbetweenthesequencesoftheactivitiesinaproject.ObservablequantityAquantityexpressingastateofthe“world”,i.e.aquantityofthephysicalrealityornature,thatisunknownatthetimeoftheanalysisbutwill,ifthesystembeinganalyzedisactuallyimplemented,takesomevalueinthefuture,andpossiblybecomeknown.ParameterWeusethetermparameterintwowaysinthisreport.Themainuseofaparameteristhatitisaquantitythatisapartoftheriskanalysismodels,andforwhichweassignnumericalvalues.Themoreacademicdefinitionofaparameterusedinaprobabilitystatementaboutanobservablequantity,X,isthataparameterisaconstructwherethevalueoftheparameteristhelimitingvaluewherewearenotabletosaturateourunderstandingabouttheobservablequantityXwhatsoevernewinformationwecouldgetholdof.ParameterestimateThenumericvalueweassesstoaparameter.ProbabilityAmeasureofuncertaintyofanevent.RiskRiskisdefinedastheanswertothethreequestions[14]:i)whatcangowrong?ii)Howlikelyisit?Andifitgoeswrong,iii)whataretheconsequences?TodescribetheriskisascenarioRiskacceptanceAdecisiontoacceptarisk.RiskacceptancecriterionAreferencebywhichriskisassessedtobeacceptableorunacceptable.ScheduleAplanwhichspecifiesthestartandfinalizationpointoftimesfortheactivitiesinaproject.StochasticdependencyTwoormorestochasticvariablesare(stochastically)dependentiftheexpectationofonestochasticvariabledependsonthevalueofoneormoreoftheotherstochasticvariables.StochasticvariableAstochasticvariable,orrandomquantity,isaquantityforwhichwedonotknowthevalueitwilltake.However,wecouldstatestatisticalpropertiesofthevariableormakeprobabilitystatementaboutthevalueofthequantity.1.3DEFINITIONSUncertaintyLackofknowledgeabouttheperformanceofasystem,andobservablequantitiesinparticular.Chapter2RiskManagementGenerally,riskmanagementisdefined(IEC60300-3-9)asa“systematicapplicationofmanagementpolicies,proceduresandpracticestothetasksofanalyzing,evaluatingandcontrollingrisk”.Itwillcomprise(IECdefinitionsinparentheses):•Riskassessment,i.e.–Riskanalysis(“Systematicuseofavailableinformationtoidentifyhazardsandtoestimatetherisktoindividualsorpopulations,propertyortheenvironment”)–Riskevaluation(“Processinwhichjudgmentsaremadeonthetolerabilityoftheriskonthebasisofriskanalysisandtakingintoaccountfactorssuchassocio-economicandenvironmentalaspects”)•Riskreduction/control(Decisionmaking,implementationandriskmonitoring).Thereexistsnocommondefinitionofrisk,butforinstanceIEC60300-3-9definesriskasa“combinationofthefrequency,orprobability,ofoccurrenceandtheconsequenceofaspecifiedhazardousevents”.Mostdefinitionscomprisetheelementsofprobabilitiesandconsequences.However,someasKlinkeandRennsuggestaverywidedefinition,stating:“Riskreferstothepossibilitythathumanactionsoreventsleadtoconsequencesthataffectaspectsofwhathumansvalue”.Sothetotalriskcomprisesthepossibilityofnumber(“all”)unwanted/hazardousevents.Itispartoftheriskanalysistodelimitwhichhazardstoinclude.Further,riskusuallyreferstothreatsinthefuture,involvinga(high)degreeofuncertainty.Inthefollowingwewillpresentthebasicelementsofriskmanagementasitisproposedtobeanintegralpartofprojectmanagement.2.1ProjectobjectivesandcriteriaInclassicalriskanalysisofindustrialsystemstheuseofso-calledriskacceptancecriteriahasplayedacentralroleinthelasttwoortreedecades.Basicallyuseofriskacceptancecriteriameansthatsomesevereconsequencesaredefined,e.g.accidentwithfatalities.Thenwetrytosetanupperlimitfortheprobabilityoftheseconsequencesthatcouldbeaccepted,i.e.wecouldnotaccepthigherprobabilitiesinanysituations.Furthertheseprobabilitiescouldonlybeacceptedifriskreductionisnotpossible,orthecostofriskreductionisveryhigh.Inrecentyearsithasbeenadiscussionintheriskanalysissocietywhetheritisfruitfulornottouseriskacceptancecriteriaaccordingtotheprinciplesabove.Itisarguedthatveryoftenriskacceptancecriteriaaresetarbitrary,andthesedonotnecessarilysupporttheoverallbestsolutions.Therefore,itcouldbemorefruitfultousesomekindofriskevaluationcriteria,ratherthanstrictacceptancecriteria.Inprojectriskmanagementwecouldestablishacceptancecriteriarelatedtotwotypesofevents:•Eventswithsevereconsequencesrelatedtohealth,environmentandsafety.•Eventswithsevereconsequencesrelatedtoprojectcosts,projectquality,projectduration,oreventerminationoftheproject.Inthiscoursewewillhavemainfocusontheprojectcostsandthedurationoftheproject.Notethatbothprojectcostandprojectdurationarestochasticvariablesandnotevents.Thusitisnotpossibletoestablishacceptancecriteriatoprojectcostordurationdirectly.Basically,therearethreetypesofnumericvalueswecouldintroduceinrelationtosuchstochasticvariablesdescribingtheproject:1.Target.Thetargetexpressesourambitionsintheproject.Thetargetshallbesomethingwearestrivingat,anditshouldbepossibletoreachthetarget.Itispossibletointroduce(internal)bonuses,orotherrewardsinordertoreachthetargetsinaproject.2.Expectation.Theexpectationsarethevaluethestochasticvariableswillachieveinthelongrun,orourexpectationabouttheoutcome.Theexpectationislessambitiousthanthetarget.Theexpectationwillinarealisticwayaccountforhazards,andthreatsandconditionswhichoftencontributetothefactthatthetargetsarenotmet.3.Commitment.Thecommitmentsarevaluesrelatedtothestochasticvariableswhichareregulatedinagreementsandcontracts.Forexampleitcouldbestatedinthecontractthatanewbridgeshallbecompletedwithinagivendate.Ifwearenotabletofulfillthecommitments,thiswillusuallyresultineconomicalconsequences,forexamplepenaltiesfordefaults,orintheworstcasecancelingofthecontract.2.2RiskidentificationAscenarioisadescriptionofaimaginedsequenceorchainofevents,e.g.wehaveawaterleakage,andwearenotabletostopthisleakagewithordinarytighteningmediumduetothepossibleenvironmentalaspectswhichisnotclarifiedatthemoment.Furtherthegreenmovementisalsolikelytoenterthesceneinthiscase.Ahazardistypicallyrelatedtoenergies,poisonousmediaetc,andiftheyarereleasedthiswillresultinanaccidentorasevereevent.Athreatisawidertermthanhazard,andweincludealsoaspectsas“wrong”methodapplied,“lackofcompetenceandexperience”.Thetermthreatisalsoveryoftenusedinconnectionwithsecurityproblems,e.g.sabotage,terrorism,andvandalism.2.3StructuringandmodelingofriskInSection2.2wehaveidentifiedmethodstoidentifyeventsandthreats.Wenowwanttorelatetheseeventsandthreatstotheexplicitmodelswehaveforprojectcostsandprojectduration.2.3.1Modelforprojectexecutiontime/schedulemodelingWhenanalyzingtheexecutiontimeforaprojectwewillhaveaprojectplanandtypicallyaGanttdiagramasastartingpoint.TheGanttdiagramistransformedintoaso-calledflownetworkwheretheconnectionsbetweentheactivitiesareexplicitlydescribed.Suchaflownetworkalsocomprisesdescriptionofdurationoftheactivitiesintermsofprobabilitystatements.ThedurationofeachactivityisstochasticVariables,whichwedenoteTiforactivityinaflownetworkwemightalsohaveuncertainactivitieswhichwillbecarriedoutonlyunderspecialconditions.Theseconditionscouldbedescribedintermsofevents,andweneedtodescribetheprobabilityofoccurrenceofsuchevents.Thus,thereisasetofquantities,i.e.timevariablesandeventsinthemodel.TheobjectiveisnowtolinktheundesiredeventsandthreatsdiscussedinSection2.2tothesetimevariablesandevents.Timevariablesaredescribedbyaprobabilitydistributionfunction.Suchadistributionfunctioncomprisesparametersthatcharacterizethetimevariable.OftenaparametricprobabilitydistributionisdescribedbythethreequantitiesL(low),M(mostlikely)andHhigh.Ifanundesiredeventoccur,itislikelythatthevaluesofL,MandHwillbehigherthanincasethiseventdoesnotoccur.AwaytoincludetheresultfromtheriskidentificationprocessisthentoexpressthedifferentvaluesofL,MandHdependingonwhetherthecriticaleventoccursornot.Ifweinadditionareabletoassesstheprobabilityofoccurrenceofthecriticalevent,theknowledgeaboutthiscriticaleventhasbeencompletelyincludedintotheriskmodel.Basedonsuchanexplicitmodelingofthecriticalevent,wecouldalsoeasilyupdatethemodelincaseofnewinformationaboutthecriticaleventisobtained,forexamplenewinformationcouldbeavailableatalaterstageintheprocessandchangesoftheplancouldstillbepossibleinlightofthenewinformation.2.3.2CostmodelingThecostmodelisusuallybasedonthecostbreakdownstructure,andthecostelementswillagainbefunctionsoflaborcost,overtimecost,purchaseprice,hourcostofrentingequipment,materialcost,amountofmaterialetc.Theprobabilisticmodelingofcostisusuallyeasierthanformodelingprojectexecutiontime.Theprincipleisjusttoaddalotofcostterms,whereeachcosttermistheproductoftheunitpriceandthenumberofunits.Weintroducepriceandvolumeasstochasticvariablestodescribetheunitpriceandthenumberofunits.ThepriceandvolumevariablesshouldalsobelinkedtotheundesiredeventsandthreatswehaveidentifiedinSection2.2.Oftenitisnecessarytolinkthecostmodeltotheschedulemodel.Forexampleincaseofdelaysitmightbenecessarytoputmoreeffortintotheprojecttocatchupwiththeproblems,andtheseeffortscouldbeverycostly.Also,iftheprojectisdelayedwemayneedtopayextracosttosub-contractorsthathavetopostponetheirsupportintotheproject.2.3.3UncertaintyinscheduleandcostmodelingAsindicatedabovewewillestablishprobabilisticmodelstodescribethedurationandcostofaproject.Theresultofsuchaprobabilisticmodelingisthatwetreatthedurationandcostasstochasticvariables.Sincedurationandcostsarestochasticvariables,thismeansthatthereisuncertaintyregardingthevaluestheywilltakeintherealprojectweareevaluating.Sometimeswesplitthisuncertaintyintothreedifferentcategories,i)Aleatoryuncertainty(variabilityduetoe.g.weatherconditions,laborconflicts,breakdownofmachinesetc.),ii)parameterorepistemicuncertaintyduetolackofknowledgeabout“true”parametervalues,andiii)modeluncertaintyduetolackofdetailed,orwrongmodeling.Undersuchthinking,thealeatoryuncertaintycouldnotbereduced;itisbelievedtobetheresultofthevariabilityintheworldwhichwecannotcontrol.Uncertaintyintheparametersis,however,believedtobereduciblebycollectingmoreinformation.Alsouncertaintyinthemodelsisbelievedtobereduciblebymoredetailedmodeling,anddecompositionofthevariouselementsthatgointothemodel.Itisappealingtohaveamentalmodelwheretheuncertaintycouldbesplitintoonepartwhichwemightnotreduce(variability),andonepartwhichwemightreducebythoroughanalysisandmoreinvestigation(increasedknowledge).Ifweareabletodemonstratethatthepartoftheuncertaintyrelatedtolackofknowledgeandunderstandinghasbeenreducedtoasufficientdegree,wecouldthenclaimhighconfidenceintheanalysis.Insomesituationtheownerortheauthoritiesputforwardrequirements.Whichcouldbeinterpretedasconfidenceregardingthequalityoftheanalysis?Itisthoughnotalwaysclearwhatismeantbysuchaconfidencelevel.Asanexample,letE(C)betheexpectedcostofaproject.Aconfidencestatementcouldnowbeformulatedas“TheprobabilitythattheactualprojectcostiswithinanintervalE(C)±10%shouldatleastbe70%”.Itis,however,notstraightforwardtodocumentsuchaconfidencelevelinarealanalysis.The“Successiveprocess(trinnvisprosessen)”[4]isanattempttodemonstratehowtoreducethe“uncertainty”intheresulttoacertainlevelofconfidence.WealsomentionthatEven[12]hasrecentlyquestionedsuchanapproachwherethereexistmodeluncertaintyandparameteruncertainty,andemphasizesthatweintheanalysisshouldfocusontheobservablequantitieswhichwillbecomeevidentforusiftheprojectisexecuted,e.g.thecosts,andthatuncertaintyinthesequantitiesrepresentthelackofknowledgeaboutwhichvaluestheywilltakeinthefuture.Thisdiscussionisnotpursuitanymoreinthispresentation.2.4Riskelementsforfollowup:RiskandopportunityregisterAsriskelementsandthreatsareidentifiedinSection2.2thesehavetobecontrolledasfaraspossible.Itisnotsufficienttoidentifytheseconditionsandmodeltheminthescheduleandcostmodels,wealsohavetomitigatetheriskelementsandthreats.Inordertoensureasystematicfollowupofriskelementsandthreatsitisrecommendedtoestablishaso-calledthreatlog.Theterms’RiskRegister‘and’Risk&OpportunityRegister‘(R&OR)issometimesusedratherthantheterm’threatlog.‘AR&ORisbestmanagedbyadatabasesolution,forexampleanMS-AccessDatabase.Eachrowinthedatabaserepresentsoneriskelementorthreat.Thefieldsinsuchadatabasecouldvary,butthefollowingfieldsseemsreasonable:•ID.Anidentifierisrequiredinordertokeeptrackofthethreatinrelationtothequantitativeriskmodels,tofollowupactionsET.•Description.Adescriptionofthethreatisnecessaryinordertounderstandthecontentoftheproblem.Itcouldbenecessarytostatetheimmediateconsequences(e.g.occupationalaccident),butalsoconsequencesintermsofthemainobjectivesoftheproject,e.g.timeandcosts.•Likelihoodorprobability.Ajudgmentregardinghowprobableitisthatthethreatortheriskconditionwillbereleasedintermsofe.g.undesiredorcriticalevents.•Impact.Ifpossible,giveadirectimpactoncostandscheduleiftheeventoccurs,eitherbyanexpectedimpact,orbyL,MandHvalues.•Referencestocostandschedule.InordertoupdatethescheduleandcostmodelsitisconvenienttogiveanexplicitreferencefromtheR&ORintothescheduleandcostmodels.•Manageability.Hereitisdescriedhowthethreatcouldbeinfluenced,eitherbyimplementingmeasurestoeliminatethethreatpriortoitrevealsitself,ormeasuresinordertoreducetheconsequencesincaseofthethreatwillmaterialize.•Alertinformation.Itisimportanttobeawareofinformationthatcouldindicatethedevelopmentofthethreatbeforeiteventuallywillmaterialize.Ifsuchinformationisavailablewecouldimplementrelevantmeasuresifnecessary.Forexampleitcouldbepossibletotakegroundsamplesatacertaincost,bututilizingtheinformationfromsuchsamplescouldenableustochooseappropriatemethodsfortunnelpenetration.•Measures.Listofmeasuresthatcouldbeimplementedtoreducetherisk.•Deadlineandresponsible.Identificationofwhoisresponsibleforimplementingandfollowupofthemeasureorthreat,andanydeadlines.•Status.Bothwithrespecttothethreatandanymeasureitisvaluabletospecifythedevelopment,i.e.didthetreatrevealitselfintoundesiredeventswithunwantedconsequences,didthemeasureplayanypositiveeffectetc.2.5CorrectionandcontrolAstheprojectdevelopstheR&ORistheprimarycontroltoolforriskfollowup.Byfollowingthestatusofthevariousthreats,riskelementsandmeasureswecouldmonitortheriskintheproject.Thisinformationshouldofcoursebelinkedtothetimeandcostplans.Ifagiventhreatdoesnotrevealintermsofundesiredevents,thetimeandcostestimatescouldbeloweredandthisgaincouldbeutilizedinotherpartoftheproject,orinotherprojects.Intheoppositesituationitisnecessarytoincreasethetimeandcostestimates,andweneedtoconsidernewmeasures,andmaybespendsomeofthereservestocatchupincaseofanexpecteddelay.Duringthelifecycleofaprojectitwilloccurnewthreatsandriskelementswhichwedidnotforeseeintheinitialriskidentificationprocess.SuchthreatsmustcontinuouslybeenteredintotheR&OR,andmeasuresneedtobeconsidered.一、介绍(一)关于本纲要本课程纲要过程中研究的是“风险也是一种项目”。重点将是就以下议题:•风险识别•风险结构•风险模型中光的时间表和成本模型•风险跟进我们也将讨论相关的决策分析,风险涉及的元素,并使用生命周期成本和生命周期的盈利模式来介绍风险管理的具体内容。(二)定义1.偶然的不确定性。我们有时会使用这个词表示数量的变化。2.认知的不确定性,缺乏知识的“世界”,特别是观察到的数量。3.依据,在一个项目中的活动的序列之间的关系。4.观察到的数量,一定量的需要表达的状态,即对物理现实的数量或性质,是未知的时间分析,在未来,如果被分析的系统实施,可能成为众所周知的。5.参数,我们使用的术语以两种方式在本报告的参数。参数的主要用途是,它是一个量是风险分析模型的一部分并且是我们指定数值。更多学术有关可观察到的数量。6.参数估计,我们评估的一个参数的数值。7.可能性,一种衡量事件的不确定性。8.风险,风险是指三个问题:I)什么可以去做了吗?II)项目的可能性有多大呢?,III)如果它出了问题,后果是什么?9.风险接受,决定接受的风险。10.风险接受准则,风险被评估为可接受或不可接受的参考。11.时间表,该计划规定的活动时间在一个项目的开始和完成点。12.随机依赖,两个或更多个随机变量(随机)依赖的期望的一个随机变量,如果依赖于其他的一个或多个随机变量的值。二、风险管理一般来说,风险管理(IEC60300-3-9)定义为“系统应用程序的管理政策,程序和做法的分析,评估和控制风险”的任务。这将包括(IEC定义在括号中):——风险分析,系统利用现有的信息,以识别危险,并估计个体或群体,财产或环境的风险。——风险评估,评估过程中,判断风险的耐受性是在风险分析的基础上,考虑的因素,如社会,经济和环境方面的。——减少风险/控制(决策,执行和风险监控)。存在的风险,但并无统一的定义,例如IEC60300-3-9风险定义为“相结合的频率或概率,发生的后果某一特定危险事件。大多数定义包括概率和后果的元素。雷恩提出一个很广泛的定义,他表示:“风险是指可能人的行动或事件导致的后果,影响人类重视的方面因此,总的风险包括(“全部”)不想要的/危险事件的可能性。这是界定哪些危害进行风险分析的一部分。此外,风险通常是指在未来的威胁,涉及的不确定性。在下面的建议是项目管理的一个组成部分,我们将介绍风险管理的基本要素。(一)项目的目标和标准在古典风险分析的工业系统使用所谓的风险接受准则发挥了核心的作用,在过去的两年或几十年。基本上使用的风险接受准则定义了一些严重的后果,例如死亡事故。然后,我们尝试设置一个上限可以接受这些后果的概率,即较高的概率在任何情况下,我们不能接受。此外,这些可能性只能接受降低风险是不可能的,或降低风险的成本是非常高的。在最近几年中,它一直是讨论在风险分析的方面是富有成果的,或不根据上述原则,使用风险接受准则。有人认为,很多时候风险接受准则任意设定,而这些不一定是支持风险接受的最佳整体解决方案。因此,它可能是使用起来更加丰硕的成果。一些风险评估标准,而不是严格的验收标准。在项目风险管理中,我们可以建立两种类型的事件相关的验收标准:•关系到健康,环境和安全的严重后果的事件。•事件相关的项目成本,项目质量,工期,甚至终止项目的严重后果。在这个过程中,我们将主要集中在项目成本和项目的持续时间。需要注意的是这两个项目的成本和项目时间是随机变量,而不是事件。因此,它是无法确定验收标准的项目直接成本或持续时间。基本上,有三种类型的数值,我们可以引入在关系到项目的随机变量来描述:1.目标,在该项目的目标应是我们正在努力,应该是可以达到的目标。引入奖金或其他奖励以达到项目的目标是可能的。2.期望,期望是随机变量,将实现从长远来看,我们期望的结果。预期是做出这样那样雄心勃勃的目标。预期将是克服危害的现实途径,威胁和经常作出贡献的事实,各项指标均满足的条件。3.承诺,承诺有关的协议和合同监管的随机变量,这些变量的值。例如,它可以在合同中注明之内完成一个给定的日期,一种新的联系。如果我们不能够履行的承诺,这通常会导致经济后果,例如违约处罚,或在最坏的情况下取消该合同。(二)风险识别不期望的事件是可能发生的,例如大的水泄漏在隧道里。情景是一个想象的事件的序列或链的描述,如我们有一个漏水的,我们是不能够阻止这与普通紧缩可能对环境方面的不明确的时刻,由于介质泄漏。此外,绿色运动在这种情况下,也有可能进入现场。通常是一个危险的能量,有毒介质等,如果他们被释放,这将导致事故或严重的事件。威胁是一个更广泛的长期危险,我们还包括“错误”的方法应用的方面,“缺乏能力和经验”。长期威胁也很常使用的安全问题,例如:破坏,恐怖主义和破坏行为。(三)构建与风险建模在(二)节中,我们已经确定的方法来识别事件和威胁。现在我们要与这些事件和威胁,我们有明确的模式,项目成本和项目工期。1.模型项目执行时间/日程建模当分析一个项目的执行时间,我们将有一个典型的项目计划和甘特图作为出发点。被变换成一个所谓的流动之间的活动连接的网络中明确描述的甘特图。这样的流网络还包括持续时间在概率语

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论