广东省佛山市南海区狮山镇2023年数学八上期末质量检测试题含解析_第1页
广东省佛山市南海区狮山镇2023年数学八上期末质量检测试题含解析_第2页
广东省佛山市南海区狮山镇2023年数学八上期末质量检测试题含解析_第3页
广东省佛山市南海区狮山镇2023年数学八上期末质量检测试题含解析_第4页
广东省佛山市南海区狮山镇2023年数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市南海区狮山镇2023年数学八上期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列银行图标中,是轴对称图形的是()A. B. C. D.2.点P(-5,4)到y轴的距离是()A.5 B.4 C.-5 D.33.两个一次函数与,它们在同一直角坐标系中的图象可能是()A. B.C. D.4.下列各组数是勾股数的是()A.1,2,3 B.0.3,0.4,0.5C.6,8,10 D.5,11,125.如图,已知,那么添加下列一个条件后,仍无法判定的是()A. B. C. D.6.计算的结果是()A.a2 B.-a2 C.a4 D.-a47.下列说法错误的个数是()①所有无限小数都是无理数;②的平方根是;③;④数轴上的点都表示有理数A.个 B.个 C.个 D.个8.有下列五个命题:①如果,那么;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤三角形的一个外角大于任何一个内角.其中真命题的个数为()A.1 B.2 C.3 D.49.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,510.如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n11.对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是()A. B. C. D.12.4的平方根是()A.2 B.±2 C. D.二、填空题(每题4分,共24分)13.在平面直角坐标系中,点在第三象限,则m的取值范围是______.14.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.15.若分式有意义,则的取值范围是__________.16.如图,是中边上的中线,点分别为和的中点,如果的面积是,则阴影部分的面积是___________.17.因式分解:__________.18.一个多边形的每个外角都等于,则这个多边形的边数是___________三、解答题(共78分)19.(8分)如图,已知∠A=∠D,AB=DB,点E在AC边上,∠AED=∠CBE,AB和DE相交于点F.(1)求证:△ABC≌△DBE.(2)若∠CBE=50°,求∠BED的度数.20.(8分)如图,,以点为圆心,小于长为半径作弧,分别交,于,两点,再分别以,为圆心,大于长为半径作弧,两弧相交于点,作射线,交于点.(1)若,求的度数;(2)若,垂足为,延长交于点,连接,求证:.21.(8分)解下列方程组:22.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.(1)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长23.(10分)平面直角坐标系中,三个顶点的坐标为.(1)直接写出关于轴对称的点的坐标:;;;(2)若各顶点的横坐标不变,纵坐标都乘以,请直接写出对应点,,的坐标,并在坐标系中画出.24.(10分)先化简,再求值:,在a=±2,±1中,选择一个恰当的数,求原式的值.25.(12分)列方程解应用题:亮亮服装店销售一种服装,若按原价销售,则每月销售额为10000元;若按八五折销售,则每月多卖出20件,且月销售额还增加1900元.(1)求每件服装的原价是多少元?(2)若这种服装的进价每件150元,求按八五折销售的总利润是多少元?26.先化简再求值:•,其中x=﹣.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的概念对各选项分析即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2、A【分析】根据一个点到y轴的距离即为横坐标的绝对值即可得出答案.【详解】点P(-5,4)到y轴的距离为故选:A.【点睛】本题主要考查点到坐标轴的距离,掌握点到坐标轴的距离的计算方法是解题的关键.3、C【分析】根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.【详解】A、若a>0,b<0,符合,不符合,故不符合题意;B、若a>0,b>0,符合,不符合,故不符合题意;C、若a>0,b<0,符合,符合,故符合题意;D、若a<0,b>0,符合,不符合,故不符合题意;故选:C.【点睛】此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.4、C【分析】根据勾股定理和勾股数的概念,逐一判断选项,从而得到答案.【详解】A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵62+82=102,∴这组数是勾股数;D、∵52+112≠122,∴这组数不是勾股数.故选:C.【点睛】本题主要考查勾股数的概念,掌握“若,且a,b,c是正整数,则a,b,c是勾股数”是解题的关键.5、C【分析】由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中

∵AB=AD,AC=AC,A、添加,根据,能判定,故A选项不符合题意;B、添加,根据能判定,故B选项不符合题意;C.添加时,不能判定,故C选项符合题意;D、添加,根据,能判定,故D选项不符合题意;故选:C.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.6、D【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:,故选D.【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.7、C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;,3的平方根是,②正确;,③错误;数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.8、A【分析】①根据任何非零数的平方均为正数即得;②根据两直线平行内错角相等即得;③根据直线外一点与直线上所有点的连线段中,垂线段最短即得;④根据无理数的定义:无限不循环小数是无理数即得;⑤根据三角形外角的性质:三角形的一个外角大于和它不相邻的任何一个内角即得.【详解】∵当时,∴命题①为假命题;∵内错角相等的前提是两直线平行∴命题②是假命题;∵直线外一点与直线上所有点的连线段中,垂线段最短,简称“垂线段最短”∴命题③是真命题;∵有理数∴命题④是假命题;∵在一个钝角三角形中,与钝角相邻的外角是锐角,且这个锐角小于钝角∴命题⑤是假命题.∴只有1个真命题.故选:A.【点睛】本题考查了平方根的性质,平行线的性质,垂线公理,无理数的定义及三角形外角的性质,正确理解基础知识的内涵和外延是解题关键.9、C【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选C.【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10、D【分析】根据垂直平分线的性质和等腰三角形的定义,可得AD=BD,AC=AB=m,进而即可求解.【详解】∵AB的垂直平分线MN交AC于点D,顶角∠A=40°,∴AD=BD,AC=AB=m,∴△DBC的周长=DB+BC+CD=BC+AD+DC=AC+BC=m+n.故选:D.【点睛】本题主要考查等腰三角形的定义以及垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点距离相等,是解题的关键.11、B【分析】根据题中的新运算法则表达出方程,再根据分式方程的解法解答即可.【详解】解:∴方程表达为:解得:,经检验,是原方程的解,故选:B.【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.12、B【分析】根据平方根的定义即可求得答案.【详解】解:∵(±1)1=4,

∴4的平方根是±1.

故选:B.【点睛】本题考查平方根.题目比较简单,解题的关键是熟记定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、填空题(每题4分,共24分)13、【解析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得,求不等式的解即可.【详解】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即,解得,故答案为:.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,解决的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14、6【解析】根据三角形的中位线性质可得,15、【分析】根据分式的概念,分式有意义则分母不为零,由此即得答案.【详解】要使有意义,则,故答案为:.【点睛】考查了分式概念,注意分式有意义则分母不能为零,这是解题的关键内容,需要记住.16、1【分析】根据三角形面积公式由点D为AB的中点得到S△BCD=S△ADC=S△ABC=8,同理得到S△ADE=S△ACE=S△ACD=4,然后再由点F为AE的中点得到S△DEF=S△ADE=1.【详解】解:∵点D为BC的中点,

∴S△BCD=S△ADC=S△ABC=8,

∵点E为CD的中点,

∴S△ADE=S△ACE=S△ACD=4,

∵点F为AE的中点,

∴S△DEF=S△ADE=1,

即阴影部分的面积为1.

故答案为:1.【点睛】本题考查了三角形的中线平分面积的性质,掌握基本性质是解题的关键.17、【分析】因为-6=-3×2,-3+2=-1,所以可以利用十字相乘法分解因式即可得解.【详解】利用十字相乘法进行因式分解:.【点睛】本题考查了分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法与十字相乘法与分组分解法分解.18、6【分析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】故个多边形是六边形.故答案为:6.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.三、解答题(共78分)19、(1)见解析;(2)∠BEC=65°【分析】(1)根据三角形的内角和得到∠ABD=∠AED,求得∠ABC=∠DBE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到BE=BC,求得∠BEC=∠C,根据三角形的内角和即可得到结论.【详解】(1)证明:∵∠A=∠D,∠AFE=∠BFD,∴∠ABD=∠AED,又∵∠AED=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,在△ABC和△DBE中,,∴△ABC≌△DBE(ASA);(2)解:∵△ABC≌△DBE,∴BE=BC,∴∠BEC=∠C,∵∠CBE=50°,∴∠BEC=∠C=65°.【点睛】本题考查了全等三角形的判定和性质,灵活的根据题中已知条件选择合适的判定方法是解题的关键.20、(1);(2)详见解析【分析】(1)先根据“两直线平行,同旁内角互补”求出∠CAB的度数,再由作法可知AM平分∠CAB,根据角平分线的定义求解即可;(2)由角平分线的定义及平行线的性质等量代换可得,可知AC=CM,根据等腰三角形的“三线合一”可得CO垂直平分AM,根据垂直平分线的性质即可证明结论.【详解】(1),,又,,由作法知,是的平分线,(2)由作法知,是的平分线,又∴,又垂直平分线段.【点睛】本题考查的是平行线的性质,等腰三角形的性质和判定,垂直平分线的性质,角平分线的尺规作图,解题关键是能从作法中确定AM平分∠CAB.21、【分析】将②变形得③,然后将③代入①可求得y的值,最后把y的值代入方程③即可求得x的值,进而得到方程组的解.【详解】解:(1)由②,得,③将③带入①,得,将代入③,得所以原方程组的解为【点睛】本题主要考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,正确掌握解题方法是解题的关键.22、解:(1)①DE∥AC.②.(1)仍然成立,证明见解析;(3)3或2.【详解】(1)①由旋转可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如图,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,

∵△DEC是由△ABC绕点C旋转得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),

即S1=S1;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此时S△DCF1=S△BDE;

过点D作DF1⊥BD,

∵∠ABC=20°,F1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等边三角形,

∴DF1=DF1,过点D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,点D是角平分线上一点,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴点F1也是所求的点,

∵∠ABC=20°,点D是角平分线上一点,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的长为3或2.23、(1)(2);图见解析.【分析】(1)根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论