阿里市重点中学2024届八年级数学第一学期期末综合测试模拟试题含解析_第1页
阿里市重点中学2024届八年级数学第一学期期末综合测试模拟试题含解析_第2页
阿里市重点中学2024届八年级数学第一学期期末综合测试模拟试题含解析_第3页
阿里市重点中学2024届八年级数学第一学期期末综合测试模拟试题含解析_第4页
阿里市重点中学2024届八年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阿里市重点中学2024届八年级数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,中,,,,动点从点出发沿射线以2的速度运动,设运动时间为,当为等腰三角形时,的值为()A.或 B.或12或4 C.或或12 D.或12或42.数字用科学记数法表示为()A. B. C. D.3.入冬以来,我校得流行性感冒症状较重,据悉流感病毒的半径为0.000000126,请把0.000000126用科学记数法表示为()A. B. C. D.4.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A.1 B.2 C.3 D.45.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A.1个 B.2个 C.3个 D.4个6.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣67.下列命题中是真命题的是()A.中位数就是一组数据中最中间的一个数B.这组数据0,2,3,3,4,6的方差是2.1C.一组数据的标准差越大,这组数据就越稳定D.如果的平均数是,那么8.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)9.两千多年前,古希腊数学家欧几里得首次运用某种数学思想整理了几何知识,完成了数学著作《原本》,欧几里得首次运用的这种数学思想是()A.公理化思想 B.数形结合思想 C.抽象思想 D.模型思想10.下列因式分解正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在中,,垂直平分,垂足为,交于,若的周长为,则的长为__________.12.如图,AD、BE是△ABC的两条中线,则S△EDC:S△ABD=______.13.一个数的立方根是,则这个数的算术平方根是_________.14.计算:______15.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.16.如图,已知BE和CF是△ABC的两条高,∠ABC=48°,∠ACB=76°,则∠FDE=_____.17.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐10元的人数占年级总人数的25%,则本次捐款20元的人数为______人.18.腰长为5,高为4的等腰三角形的底边长为_____.三、解答题(共66分)19.(10分)观察下列等式:;;;……根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数:()-5=();(2)小明将上述等式的特征用字母表示为:(、为任意实数).①小明和同学讨论后发现:、的取值范围不能是任意实数.请你直接写出、不能取哪些实数.②是否存在、两个实数都是整数的情况?若存在,请求出、的值;若不存在,请说明理由.20.(6分)已知,如图:长方形ABCD中,点E为BC边的中点,将D折起,使点D落在点E处.(1)请你用尺规作图画出折痕和折叠后的图形.(不要求写已知,求作和作法,保留作图痕迹)(2)若折痕与AD、BC分别交于点M、N,与DE交于点O,求证△MDO≌△NEO.21.(6分)精准扶贫,助力苹果产业大发展.甲、乙两超市为响应党中央将消除贫困和实现共同富裕作为重要的奋斗目标,到种植苹果的贫困山区分别用元以相同的进价购进质量相同的苹果.甲超市的销售方案:将苹果按大小分类包装销售,其中大苹果千克,以进价的倍价格销售,剩下的小苹果以高于进价的销售.乙超市的销售方案:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利元(包含人工工资和运费).(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.22.(8分)如图(1),方格图中每个小正方形的边长为1,点A、B、C都是格点.(1)画出关于直线MN对称的;(2)写出的长度;(3)如图(2),A,C是直线MN同侧固定的点,是直线MN上的一个动点,在直线MN上画出点,使最小.23.(8分)如图,在中,,,线段与关于直线对称,是线段与直线的交点.(1)若,求证:是等腰直角三角形;(2)连,求证:.24.(8分)如图,三个顶点的坐标分别为,,.(1)请画出关于轴成轴对称的图形,并写出、、的坐标;(2)求的面积;(3〉在轴上找一点,使的值最小,请画出点的位置.25.(10分)如图,已知AB∥DE.∠ABC=70°,∠CDE=140°,求∠C的度数.26.(10分)如图,在与中,点,,,在同一直线上,已知,,,求证:.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据勾股定理求出BC,当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.【详解】因为中,,,,所以(cm)①当AB=BP时,t=(s);②当AB=AP时,因为AC⊥BC,所以BP=2BC=24cm,所以t=(s);③当BP=AP时,AP=BP=2tcm,CP=(12-2t)cm,AC=5cm,在Rt△ACP中,AP2=AC2+CP2,所以(2t)2=52+(12-2t)2,解得:t=综_上所述:当△ABP为等腰三角形时,或或12故选:C【点睛】考核知识点:等腰三角形,勾股定理.根据题画出图形,再利用勾股定理解决问题是关键.2、D【解析】根据科学记数法可表示为:(,n为整数)表达即可.【详解】解:,故答案为:D.【点睛】本题考查了绝对值小于1的科学记数法的表示,熟记科学记数法的表示方法是解题的关键.3、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000126=1.26×10-1.

故选:B.【点睛】此题考查科学记数法表示较小的数,解题关键在于掌握一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4、C【分析】作PE⊥OA于E,根据角平分线的性质解答.【详解】解:作PE⊥OA于E,

∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,

∴PE=PD=3,

故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5、B【解析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【详解】如图,满足条件的所有点P的个数为1.故选B.【点睛】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.6、D【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】解:0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.故选D.7、D【分析】根据中位数的概念、方差的计算公式、方差的性质判断.【详解】解:A、中位数是一组数据中最中间的一个数或最中间的两个数的平均数,本选项说法是假命题;

B、(0+2+3+3+4+6)=3,[(0-3)2+(2-3)2+(3-3)2+(3-3)2+(4-3)2+(6-3)2]=,则本选项说法是假命题;C、一组数据的标准差越大,这组数据就越不稳定,本选项说法是假命题;D、如果x1,x2,x3,…,xn的平均数是,那么(x1-)+(x2-)+…+(xn-)=0,是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.9、A【分析】根据欧几里得和《原本》的分析,即可得到答案.【详解】解:∵《原本》是公理化思想方法的一个雏形。∴欧几里得首次运用的这种数学思想是公理化思想;故选:A.【点睛】本题考查了公理化思想来源,解题的关键是对公理化思想的认识.10、D【解析】直接利用提取公因式法以及公式法分解因式,进而判断即可.【详解】A、,故此选项错误;B、,无法分解因式,故此选项错误;C、,无法分解因式,故此选项错误;D、,正确,故选D.【点睛】本题考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.二、填空题(每小题3分,共24分)11、8cm;【分析】先根据线段垂直平分线的性质得出AD=BD,再根据的周长为,即可得出BC的长.【详解】解:∵AB的垂直平分线交AC于点D,垂足为点E,∴AD=BD,∵AD+CD=AC=10,∴BD+CD=10,∵BD+CD+BC=18,∴BC=;故答案为:8cm.【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.12、1:1.【分析】根据三角形中位线定理得到DE∥AB,DEAB,根据相似三角形的性质得到()1,根据三角形的面积公式计算,得到答案.【详解】∵AD、BE是△ABC的两条中线,∴DE∥AB,DEAB,∴△EDC∽△ABC,∴()1,∵AD是△ABC的中线,∴,∴S△EDC:S△ABD=1:1.故答案为:1:1.【点睛】本题考查的是三角形中位线定理、相似三角形的判定和性质、三角形的面积计算,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13、【解析】根据立方根的定义,可得被开方数,根据开方运算,可得算术平方根.【详解】解:=64,=1.

故答案为:1.【点睛】本题考查了立方根,先立方运算,再开平方运算.14、【详解】==915、13【解析】试题分析:已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.16、124°【解析】试题解析:在△ABC中,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣48°﹣76°=56°,在四边形AFDE中,∵∠A+∠AFC+∠AEB+∠FDE=360°,又∵∠AFC=∠AEB=90°,∠A=56°,∴∠FDE=360°﹣90°﹣90°﹣56°=124°.17、35【解析】分析:根据捐款10元的人数占总人数25%可得捐款总人数,将总人数减去其余各组人数可得答案.详解:根据题意可知,本年级捐款捐款的同学一共有20÷25%=80(人),则本次捐款20元的有:80−(20+10+15)=35(人),故答案为35.点睛:本题考查了条形统计图.计算出捐款总人数是解决问题的关键.18、6或或.【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【详解】解:①如图1当,,则,∴底边长为6;②如图1.当,时,则,∴,∴,∴此时底边长为;③如图3:当,时,则,∴,∴,∴此时底边长为.故答案为6或或.【点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.三、解答题(共66分)19、(1);(2)①x不能取-1,y不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【分析】(1)设所填数为x,则2x-5=5x;(2)①假如,则,根据分式定义可得;②由①可知或,x≠-1,y≠2,代入尝试可得.【详解】(1)设所填数为x,则2x-5=5x解得x=所以所填数是(2)①假如则所以x≠-1,y≠2即:x不能取-1,y不能取2;②存在,由①可知或,x≠-1,y≠2所以x,y可取的整数是:x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【点睛】考核知识点:分式的值.理解分式定义是关键.20、(1)图见解析;(2)证明见解析【分析】(1)作DE的垂直平分线分别交AD和BC于点M、N,MN即为折痕,再以E为圆心,CD的长为半径作弧,以N为圆心,NC的长为半径作弧,两弧交于点C′,四边形MEC′N即为四边形MDCN折叠后的图形;(2)根据矩形的性质可得AD∥BC,从而得出∠MDO=∠NEO,然后根据垂直平分线的定义可得DO=EO,最后利用ASA即可证出结论.【详解】解:(1)分别以D、E为圆心,大于DE的长为半径作弧,两弧分别交于点P、Q,连接PQ,分别交AD和BC于点M、N,连接ME和DN,此时MN垂直平分DE,MN即为折痕;再以E为圆心,CD的长为半径作弧,以N为圆心,NC的长为半径作弧,两弧交于点C′,四边形MEC′N即为四边形MDCN折叠后的图形;(2)∵四边形ABCD为矩形∴AD∥BC∴∠MDO=∠NEO∵MN垂直平分DE∴DO=EO在△MDO和△NEO中∴△MDO≌△NEO【点睛】此题考查的是作折叠图形、矩形的性质和全等三角形的判定,掌握用尺规作图作线段的垂直平分线、矩形的性质和全等三角形的判定是解决此题的关键.21、(1)10(2)165000;将苹果按大小分类包装销售更合算.【分析】(1)先设苹果进价为每千克x元,根据两超市将苹果全部售完,其中甲超市获利210000元列出方程,求出x的值,再进行检验即可求出答案;(2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利210000元相比较即可.【详解】(1)设苹果进价为每千克x元,根据题意得:×2x+(1+10%)x(−20000)−300000=210000,解得:x=10,经检验x=10是原方程的解,答:苹果进价为每千克10元.(2)由(1)得,每个超市苹果总量为:=30000(千克),大、小苹果售价分别为20元和11元,则乙超市获利30000×(−10)=165000(元),∵甲超市获利210000元,∵210000>165000,∴将苹果按大小分类包装销售,更合算.【点睛】此题考查了分式方程的应用,关键是读懂题意,找出题目中的等量关系,根据两超市将苹果全部售完,其中甲超市获利210000元列出方程,解方程时要注意检验.22、(1)详见解析;(2)10;(3)详见解析.【分析】(1)直接利用轴对称图形的性质分别得出对应点位置进而得出答案.(2)利用网格直接得出AA1的长度.(3)利用轴对称求最短路线的方法得出点位置.【详解】解:(1)如图(1)所示:,即为所求;(2)的长度为:10;(3)如图(2)所示:点即为所求,此时最小.【点睛】本题考查坐标系中轴对称图形,关键在于熟悉相关基本概念作图.23、(1)证明见解析;(2)证明见解析.【分析】(1)首先证明是正三角形得,再根据对称性得,AC=AD,从而可得结论;(2)在上取点,使,连,证明≌,再证明是正三角形得,从而可得结论.【详解】在中,,是正三角形,(1)线段与关于直线对称,,是等腰直角三角形(2)在上取点,使,连线段与关于直线对称,∴=∠ACE在与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论