2024届江苏省苏州市园区一中学中考联考数学试题含解析_第1页
2024届江苏省苏州市园区一中学中考联考数学试题含解析_第2页
2024届江苏省苏州市园区一中学中考联考数学试题含解析_第3页
2024届江苏省苏州市园区一中学中考联考数学试题含解析_第4页
2024届江苏省苏州市园区一中学中考联考数学试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年江苏省苏州市园区一中学中考联考数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为()A.0 B.﹣1 C.1 D.720172.下列运算结果正确的是()A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a63.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和BC的长分别为()A.2,π3 B.23,π C.3,2π3 D.234.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为()A.2 B.-2 C.4 D.-45.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A. B. C. D.6.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前跑过的路程大于小林前跑过的路程D.小林在跑最后的过程中,与小苏相遇2次7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.8.2cos30°的值等于()A.1 B. C. D.29.抛物线的顶点坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)10.4的平方根是()A.4 B.±4 C.±2 D.211.在平面直角坐标系中,点(2,3)所在的象限是(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限12.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A,B,C在⊙O上,∠OBC=18°,则∠A=_______________________.14.如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于__________.15.分解因式:x2y﹣xy2=_____.16.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是17.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.20.(6分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为2.求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.21.(6分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.

(1)参加音乐类活动的学生人数为

人,参加球类活动的人数的百分比为

(2)请把图2(条形统计图)补充完整;

(3)该校学生共600人,则参加棋类活动的人数约为.

(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.

22.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?23.(8分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆;2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.24.(10分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.25.(10分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.26.(12分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.27.(12分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】

根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【题目详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【题目点拨】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.2、B【解题分析】

分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【题目详解】A.a3+a4≠a7,不是同类项,不能合并,本选项错误;B.a4÷a3=a4-3=a;,本选项正确;C.a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【题目点拨】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.3、D【解题分析】试题分析:连接OB,∵OB=4,∴BM=2,∴OM=23,BC=故选D.考点:1正多边形和圆;2.弧长的计算.4、D【解题分析】

要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【题目详解】过点、作轴,轴,分别于、,设点的坐标是,则,,,,,,,,,,,,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【题目点拨】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.5、B【解题分析】∵①对顶角相等,故此选项正确;②若a>b>0,则<,故此选项正确;③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;⑤边长相等的多边形内角不一定都相等,故此选项错误;∴从中任选一个命题是真命题的概率为:.故选:B.6、D【解题分析】

A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.7、C【解题分析】

设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【题目详解】解:设大马有x匹,小马有y匹,由题意得:,故选C.【题目点拨】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.8、C【解题分析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×=.故选C.点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.9、A【解题分析】

已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【题目详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【题目点拨】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.10、C【解题分析】

根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.【题目详解】∵(±1)1=4,∴4的平方根是±1.故选D.【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11、A【解题分析】

根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【题目详解】解:点(2,3)所在的象限是第一象限.故答案为:A【题目点拨】考核知识点:点的坐标与象限的关系.12、C.【解题分析】试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故选D.考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、72°.【解题分析】

解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案为72°.【题目点拨】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.14、4.【解题分析】

只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.【题目详解】解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.故答案为:4【题目点拨】本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底+下底)15、xy(x﹣y)【解题分析】原式=xy(x﹣y).故答案为xy(x﹣y).16、k≥-1【解题分析】试题解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-13∵原方程是一元二次方程,∴k≠1.考点:根的判别式.17、.【解题分析】

平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【题目详解】∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.故答案为:y=1(x﹣1)1+1.【题目点拨】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.18、1.【解题分析】

求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,【题目详解】解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,则5x﹣3x=4,x=1,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:在Rt△BDE中,故答案为:1.【题目点拨】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2);(3);【解题分析】

(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;(2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设DH=x,则DE=2x,所以然后求出x即可得到DE的长.【题目详解】(1)证明:连接OA、AD,如图,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD为直径,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO为等边三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直径为;(3)解:作EH⊥AD于H,如图,∵点B等分半圆CD,∴∠BAC=45°,∴∠DAE=45°,设DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【题目点拨】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.20、(2)(2)7或2.【解题分析】试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.试题解析:(2)∵△AOM的面积为2,∴|k|=2,而k>0,∴k=6,∴反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,把x=2代入y=得y=6,∴M点坐标为(2,6),∴AB=AM=6,∴t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t-2,∴C点坐标为(t,t-2),∴t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2.考点:反比例函数综合题.21、(1)7、30%;(2)补图见解析;(3)105人;(3)

【解题分析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、(1)见解析(2)300(3)2小时【解题分析】

解:(1)设甲组加工的零件数量y与时间x的函数关系式为.根据题意,得,解得.所以,甲组加工的零件数量y与时间x的函数关系式为:.(2)当时,.因为更换设备后,乙组工作效率是原来的2倍,所以,.解得.(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为.当0≤x≤2时,.解得.舍去.当2<x≤2.8时,.解得.舍去.当2.8<x≤4.8时,.解得.所以,经过3小时恰好装满第1箱.当3<x≤4.8时,.解得.舍去.当4.8<x≤6时..解得.因为5-3=2,所以,再经过2小时恰好装满第2箱.23、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;(4).【解题分析】

(1)认真读题,找到题目中的相关信息量,列表统计即可;(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;(3)根据图表信息写出一个符合条件的信息即可;(4)利用树状图确定求解概率.【题目详解】(1)统计表如下:2017年新能源汽车各类型车型销量情况(单位:万辆)类型纯电动混合动力总计新能源乘用车46.811.157.9新能源商用车18.41.419.8(2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,补全图形如下:(3)总销量越高,其个人购买量越大.(4)画树状图如下:∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.【题目点拨】此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.24、一次函数解析式为;反比例函数解析式为;.【解题分析】

(1)根据A(-1,0)代入y=kx+2,即可得到k的值;(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函数得到m的值;(3)先根据D(a,0),PD∥y轴,即可得出P(a,2a+2),Q(a,),再根据PQ=2QD,即可得,进而求得D点的坐标.【题目详解】(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C(1,n)代入y=2x+2得n=4,∴C(1,4),把C(1,4)代入y=得m=1×4=4,∴反比例函数解析式为y=;(2)∵PD∥y轴,而D(a,0),∴P(a,2a+2),Q(a,),∵PQ=2QD,∴2a+2﹣=2×,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.25、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③点Q的坐标为(1,﹣4+2)或(1,﹣4﹣2).【解题分析】分析:(1)将二次函数的解析式进行配方即可得到顶点D的坐标.(2)①以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N的坐标关键是求出点M的坐标;首先根据①的函数解析式设出M点的坐标,然后根据题干条件:BF=2MF作为等量关系进行解答即可.③设⊙Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD²=2QG²=2QB²,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标.详解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD为直径的圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),则:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴抛物线的解析式:y=﹣x2+2x+3,D(1,4).∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M(x,﹣x2+2x+3),则OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化简,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③设⊙Q与直线CD的切点为G,连接QG,过C作CH⊥QD于H,如下图:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;设Q(1,b),则QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q的坐标为(1,)或(1,).点睛:此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和⊙Q半径间的数量关系是解题题目的关键.26、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).【解题分析】分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).由(4)得:OH=2,BH=4.∵OC与⊙M相切于N,∴MN⊥OC.设圆的半径为r,则MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直径,∴∠BGD=90°,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论