




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省巢湖市2024届八上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若,则下列不等式正确的是()A. B. C. D.2.某工程对承接了60万平方米的绿化工程,由于情况有变,……,设原计划每天绿化的面积为万平方米,列方程为,根据方程可知省略的部分是()A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务3.如果分式有意义,则x的取值范围是()A.x>3 B.x≠3 C.x<3 D.x>04.折叠长方形的一边,使点落在边的点处,若,求的长为()A. B. C. D.5.下列分式不是最简分式的是()A. B. C. D.6.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣17.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A. B. C. D.8.下列式子可以用平方差公式计算的是()A. B.C. D.9.不能使两个直角三角形全等的条件是().A.一条直角边及其对角对应相等 B.斜边和两条直角边对应相等C.斜边和一条直角边对应相等 D.两个锐角对应相等10.计算=().A.6x B. C.30x D.二、填空题(每小题3分,共24分)11.如图,在四边形中,,,,,点是的中点.则______.12.如图,将等腰绕底角顶点A逆时针旋转15°后得到,如果,那么两个三角形的重叠部分面积为____.13.如图,点在同一直线上,平分,,若,则__________(用关于的代数式表示).14.如图,是的角平分线,,垂足为,且交线段于点,连结,若,设,则关于的函数表达式为_____________.15.如图,在中,则,的面积为__________.16.一个n边形的内角和为1260°,则n=__________.17.计算的结果为________.18.如图,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A,B的面积之和为_____.三、解答题(共66分)19.(10分)如图,等腰三角形中,,,AD为底边BC上的高,动点从点D出发,沿DA方向匀速运动,速度为,运动到点停止,设运动时间为,连接BP.(0≤t≤8)(1)求AD的长;(2)设△APB的面积为y(cm²),求y与t之间的函数关系式;(3)是否存在某一时刻t,使得S△APB:S△ABC=1:3,若存在,求出的值;若不存在,说明理由.(4)是否存在某一时刻,使得点P在线段AB的垂直平分线上,若存在,求出的值;若不存在,说明理由.20.(6分)在数学活动课上,李老师让同学们试着用角尺平分(如图所示),有两组.同学设计了如下方案:方案①:将角尺的直角顶点介于射线之间,移动角尺使角尺两边相同的刻度位于上,且交点分别为,即,过角尺顶点的射线就是的平分线.方案②:在边上分别截取,将角尺的直角顶点介于射线之间,移动角尺使角尺两边相同的刻度与点重合,即,过角尺顶点的射线就是的平分线.请分别说明方案①与方案②是否可行?若可行,请证明;若不可行,请说明理由.21.(6分)如图,在中,,将沿着折叠以后点正好落在边上的点处.(1)当时,求的度数;(2)当,时,求线段的长.22.(8分)已知:a2+3a﹣2=0,求代数a-3a23.(8分)已知,如图,在中,是的中点,于点,于点,且.求证.完成下面的证明过程:证明:∵,(______)∴(______)∵是的中点∴又∵∴(______)∴(______)∴(______)24.(8分)先化简,再求值:,在a=±2,±1中,选择一个恰当的数,求原式的值.25.(10分)一列快车从甲地始往乙地,一列慢车从乙地始往甲地,慢车的速度是快车速度的,两车同时出发.设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象解决以下问题:(1)甲、乙两地之间的距离为_______;点的坐标为__________;(2)求线段的函数关系式,并写出自变量的取值范围;(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?26.(10分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵m>n,∴m-2>n-2,∴选项A不符合题意;
∵m>n,∴,∴选项B符合题意;∵m>n,∴4m>4n,∴选项C不符合题意;
∵m>n,∴-5m<-5n,∴选项D不符合题意;
故选:B【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2、A【解析】根据工作时间=工作总量÷工作效率结合所列分式方程,即可找出省略的条件,此题得解.【详解】解:设原计划每天绿化的面积为x万平方米,∵所列分式方程是,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务.故选:A.【点睛】本题考查了分式方程的应用,根据给定的分式方程,找出省略的条件是解题的关键.3、B【分析】分式有意义的条件是分母不等于零,从而得到x﹣2≠1.【详解】∵分式有意义,∴x﹣2≠1.解得:x≠2.故选:B【点睛】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.4、A【分析】在Rt△ABF中,根据勾股定理求出BF的值,进而得出FC=BC-BF=10-6=4cm.在Rt△EFC中,根据勾股定理即可求出EC的长.【详解】设EC的长为xcm,∴DE=(8-x)cm.∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6cm.∴FC=BC-BF=10-6=4cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=1.∴x=2.故EC的长为2cm.故答案为:A.【点睛】本题考查了图形的翻折的知识,翻折中较复杂的计算,需找到翻折后相应的直角三角形,利用勾股定理求解所需线段.5、B【分析】根据最简分式的概念即可得出答案.【详解】解:A、无法再化简,所以是最简分式,故A选项错误;B、,所以不是最简分式,故B选项正确;C、无法再化简,所以是最简分式,故C选项错误;D、无法再化简,所以是最简分式,故D选项错误故答案为:B.【点睛】本题考查最简分式的概念,熟记最简分式的概念是解题的关键.6、D【详解】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣1)0=1,故B错误;C、|﹣1|=1,故C错误;D、﹣(﹣1)2=﹣1,故D正确;故选D.【点睛】本题考查1、负指数幂;2、零指数幂;3、绝对值;4、乘方,计算难度不大.7、B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.8、D【分析】根据平方差公式的结构特点,对各选项分析判断后利用排除法求解.【详解】A、两个都是相同的项,不符合平方差公式的要求;
B、不存在相同的项,不符合平方差公式的要求;
C、两个都互为相反数的项,不符合平方差公式的要求;
D、3b是相同的项,互为相反项是2a与-2a,符合平方差公式的要求.
故选:D.【点睛】此题考查平方差公式,熟记公式结构是解题的关键.运用平方差公式(a+b)(a-b)=a2-b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.9、D【解析】根据各选项的已知条件,结合直角三角形全等的判定方法,对选项逐一验证即可得出答案.【详解】解:A、符合AAS,正确;
B、符合SSS,正确;
C、符合HL,正确;
D、因为判定三角形全等必须有边的参与,错误.
故选:D.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、B【解析】根据分式的性质,分子分母约去6x即可得出答案.【详解】解:=,故选B.【点睛】此题考查了分式的性质,熟练掌握分式的性质是解题的关键.二、填空题(每小题3分,共24分)11、【分析】延长BC
到E
使BE=AD,则四边形ABED是平行四边形,根据三角形的中位线的性质得到,答案即可解得.【详解】解:延长BC
到E,
使BE=AD,∵,∴四边形ABED是平行四边形,∵,,
∴C是BE的中点,
∵M是BD的中点,
∴
又∵,∴,故答案为:.【点睛】本题考查了平行四边形的判定,三角形的中位线定理,正确的作出辅助线是解题的关键.12、【分析】设B′C′与AB相交于点D,根据等腰直角三角形的性质可得∠BAC=45°,根据旋转角可得∠CAC′=15°,然后求出∠C′AD=30°,根据30°角所对的直角边等于斜边的一半可得AD=2C′D,然后利用勾股定理列式求出C′D的长度,再根据三角形的面积公式列式进行计算即可得解.【详解】设B′C′与AB相交于点D,如图,在等腰直角△ABC中,∠BAC=45°,∵旋转角为15°,∴∠CAC′=15°,∴∠C′AD=∠BAC-∠CAC′=45°-15°=30°,∴AD=2C′D,在Rt△AC′D中,根据勾股定理,AC′2+C′D2=AD2,即12+C′D2=4C′D2,解得C′D=,∴重叠部分的面积=.故答案为:.【点睛】本题考查了旋转的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟练掌握旋转的性质是解题的关键.13、(90-α)【解析】根据∠,可以得到∠EBD,再根据BF平分∠EBD,CG∥BF,即可得到∠GCD,本题得以解决.【详解】∵∠EBA=,∠EBA+∠EBD=180,
∴∠EBD,
∵BF平分∠EBD,
∴∠FBD=∠EBD=(180)=90,
∵CG∥BF,
∴∠FBD=∠GCD,
∴∠GCD=90=,
故答案为:(90-).【点睛】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.14、【分析】根据题意,由等腰三角形的性质可得BD是AE的垂直平分线,进而得到AD=ED,求出的度数即可得到关于的函数表达式.【详解】∵是的角平分线,∴,∴∴∴∴∴∵,∴∴∵∴∴,故答案为:.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.15、150【分析】过点B作BD⊥AC,根据∠A=150°,可得∠BAD=30°,再由AB=20cm,可得BD的长,再根据三角形的面积公式求解即可.【详解】如图,过点B作BD⊥AC,∵∠BAC=150°,∴∠BAD=30°,∴BD=AB,∵AB=20,∴BD=10,∵S△ABC=AC•BD=×30×10=150,故答案为150.【点睛】本题考查含30度角的直角三角形,在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.16、1【分析】根据多边形内角和公式可直接进行求解.【详解】解:由一个n边形的内角和为1260°,则有:,解得:,故答案为1.【点睛】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.17、【分析】先把分式进行整理,然后进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则进行解题.18、1.【分析】设出正方形的边长,根据正方形的面积公式和已知阴影部分的面积构建一个方程组,可整体求出正方形A、B的面积之和为1.【详解】解:如图所示:设正方形A、B的边长分别为x,y,依题意得:,化简得:解得:x2+y2=1,∴SA+SB=x2+y2=1,故答案为1.【点睛】本题综合考查了完全平方公式的应用,正方形的面积公式,重点掌握完全平方公式的应用,难点是巧用变形求解两个正方形的面积和.三、解答题(共66分)19、(1)8;(2)y=1﹣3t(0≤t≤8);(3)存在,;(4)存在,【分析】(1)利用等腰三角形的性质以及勾股定理解决问题即可.(2)根据y=S△APB=S△ABD﹣S△PBD,化简计算即可.(3)由题意S△APB:S△ABC=1:3,构建方程即可解决问题.(4)由题意点P在线段AB的垂直平分线上,推出PA=PB,在Rt△PBD中,根据PB2=PD2+BD2,构建方程即可解决问题.【详解】(1)∵AB=AC,AD⊥BC,∴BC=DC=6cm,在Rt△ABD中,∵∠ADB=90°,AB=10cm,BD=6cm,∴AD===8(cm).(2)y=S△APB=S△ABD﹣S△PBD=×6×8﹣×6×t=﹣3t+1.∴y=1﹣3t(0≤t≤8).(3)∵S△APB:S△ABC=1:3,∴(1﹣3t):×12×8=1:3,解得t=.∴满足条件的t的值为.(4)由题意点P在线段AB的垂直平分线上,∴PA=PB,在Rt△PBD中,∵PB2=PD2+BD2,∴t2=(8﹣t)2+62,解得t=.∴满足条件的t的值为.【点睛】本题属于三角形综合题,考查了等腰三角形的性质,三角形的面积,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识.20、方案①不可行,理由见解析;方案②可行,证明见解析.【分析】通过画图可分析到:方案①中判定PM=PN并不能判断PO就是∠AOB的角平分线,关键是缺少△OPM≌△OPN的条件,只有“边边”的条件;
方案②中△OPM和△OPN是全等三角形(三边相等),则∠MOP=∠NOP,所以OP为∠AOB的角平分线;【详解】如图可得,方案①不可行.因为只有,不能判断.不能得到,所以不能判定就是的平分线.方案②可行.在和中,.就是的平分线.【点睛】考核知识点:全等三角形的判定和性质.理解全等三角形的判定和性质是关键.21、(1);(2)3【分析】(1)先根据直角三角形两锐角互余求出的度数,再由折叠的性质得出,从而的度数可求;(2)先由勾股定理求出BC的长度,然后由折叠的性质得到,设,在中利用勾股定理即可求出x的值,即DE的长度.【详解】(1)∵,由折叠的性质可知(2)∵,,∴由折叠的性质可知设,则在中,∴解得∴【点睛】本题主要考查折叠的性质和勾股定理,掌握折叠的性质,勾股定理和直角三角形两锐角互余是解题的关键.22、12【解析】根据分式的混合运算顺序和运算法则把所给的分式化为最简,再由题意得出a2+3a=2,代入即可求解.【详解】原式=a-3=a-3a=a-3a(a-2)=1a(a+3)=1a∵a2+3a﹣2=0,∴a2+3a=2,∴原式=12【点睛】本题主要考查分式的化简求值,根据分式的混合运算顺序和运算法则把分式化为最简是解题的关键.23、见解析【分析】根据题意,找出证明三角形全等的条件,利用HL证明Rt△BDE≌Rt△CDF,即可得到结论成立.【详解】解:∵DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD=90°(垂直的定义)∵D是BC的中点,∴BD=CD,又∵BE=CF,∴Rt△BDE≌Rt△CDF(HL)∴∠B=∠C(全等三角形的对应角相等)∴AB=AC(等角对等边).【点睛】本题考查了全等三角形的判定和性质,解题的关键是熟练掌握证明三角形全等的方法.24、,【分析】对括号内的分式通分化简、用平方差公式因式分解,再根据整式的乘法和整式的除法法则进行计算,再代入的值进行计算.【详解】当时,原式.【点睛】本题考查的是分式的混合运算-化简求值,解题的关键是熟练掌握分式的混合运算法则.25、(1)(15,1200)(2).(3)3.7h【分析】(1)根据已知条件和函数图像可以直接写出甲、乙两地之间的距离;(2)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 项目版权转让协议书
- 集训服务合同协议书
- 停车场转租合同协议书
- 酒店居住安全协议书
- 解除拆迁补偿协议书
- 非婚抚养孩子协议书
- 邯郸学院就业协议书
- 转让食堂摊位协议书
- 闲置校舍转让协议书
- 茶桌转让合同协议书
- 数据中心的网络管理实践试题及答案
- 2024年中考二模 历史(四川成都卷)(考试版A4)
- 粉刷墙面施工协议书
- 辅导机构招聘合同协议
- 青年创新意识的培养试题及答案
- 《2025年CSCO肾癌诊疗指南》解读课件
- 【MOOC】软件质量保证-西安交通大学 中国大学慕课MOOC答案
- SFR-SE-ARC-0031激光跟踪设置-作业指导书
- 录音棚、摄影棚、直播室设计方案
- 安全生产隐患排查概述PPT课件
- CRCC认证目录
评论
0/150
提交评论