2024届黑龙江省哈尔滨第九中学高三上数学期末联考试题含解析_第1页
2024届黑龙江省哈尔滨第九中学高三上数学期末联考试题含解析_第2页
2024届黑龙江省哈尔滨第九中学高三上数学期末联考试题含解析_第3页
2024届黑龙江省哈尔滨第九中学高三上数学期末联考试题含解析_第4页
2024届黑龙江省哈尔滨第九中学高三上数学期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省哈尔滨第九中学高三上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的部分图象如图所示,则的表达式是()A. B.C. D.2.已知,则“m⊥n”是“m⊥l”的A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件3.某几何体的三视图如图所示,则该几何体的体积为()A. B.3 C. D.44.设为抛物线的焦点,,,为抛物线上三点,若,则().A.9 B.6 C. D.5.若为虚数单位,则复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,,则的最大值为()A. B. C.2 D.7.已知函数(其中,,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:①直线是函数图象的一条对称轴;②点是函数的一个对称中心;③函数与的图象的所有交点的横坐标之和为.其中正确的判断是()A.①② B.①③ C.②③ D.①②③8.展开项中的常数项为A.1 B.11 C.-19 D.519.设为虚数单位,复数,则实数的值是()A.1 B.-1 C.0 D.210.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心11.下列函数中既关于直线对称,又在区间上为增函数的是()A.. B.C. D.12.如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是()A.2014年我国入境游客万人次最少B.后4年我国入境游客万人次呈逐渐增加趋势C.这6年我国入境游客万人次的中位数大于13340万人次D.前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差二、填空题:本题共4小题,每小题5分,共20分。13.函数的最大值与最小正周期相同,则在上的单调递增区间为______.14.展开式中的系数为________.15.已知向量=(-4,3),=(6,m),且,则m=__________.16.有以下四个命题:①在中,的充要条件是;②函数在区间上存在零点的充要条件是;③对于函数,若,则必不是奇函数;④函数与的图象关于直线对称.其中正确命题的序号为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数,其中.(Ⅰ)当为偶函数时,求函数的极值;(Ⅱ)若函数在区间上有两个零点,求的取值范围.18.(12分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).19.(12分)在中,角、、所对的边分别为、、,且.(1)求角的大小;(2)若,的面积为,求及的值.20.(12分)已知,,,,证明:(1);(2).21.(12分)已知函数,直线是曲线在处的切线.(1)求证:无论实数取何值,直线恒过定点,并求出该定点的坐标;(2)若直线经过点,试判断函数的零点个数并证明.22.(10分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,,,则,,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.2、B【解析】

构造长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断.【详解】如图,取长方体ABCD﹣A1B1C1D1,令平面α为面ADD1A1,底面ABCD为β,直线=直线。若令AD1=m,AB=n,则m⊥n,但m不垂直于若m⊥,由平面平面可知,直线m垂直于平面β,所以m垂直于平面β内的任意一条直线∴m⊥n是m⊥的必要不充分条件.故选:B.【点睛】本题考点有两个:①考查了充分必要条件的判断,在确定好大前提的条件下,从m⊥n⇒m⊥?和m⊥⇒m⊥n?两方面进行判断;②是空间的垂直关系,一般利用长方体为载体进行分析.3、C【解析】

首先把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.4、C【解析】

设,,,由可得,利用定义将用表示即可.【详解】设,,,由及,得,故,所以.故选:C.【点睛】本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.5、D【解析】

根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案.【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】

建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为可得到点的坐标为:故得到故得到,故最大值为:2.故答案为C.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.7、C【解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否.详解:因为为对称中心,且最低点为,所以A=3,且由所以,将带入得,所以由此可得①错误,②正确,③当时,,所以与有6个交点,设各个交点坐标依次为,则,所以③正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题.8、B【解析】

展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.9、A【解析】

根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.10、A【解析】

根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.11、C【解析】

根据函数的对称性和单调性的特点,利用排除法,即可得出答案.【详解】A中,当时,,所以不关于直线对称,则错误;B中,,所以在区间上为减函数,则错误;D中,,而,则,所以不关于直线对称,则错误;故选:C.【点睛】本题考查函数基本性质,根据函数的解析式判断函数的对称性和单调性,属于基础题.12、D【解析】

ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【详解】A.由统计图可知:2014年入境游客万人次最少,故正确;B.由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C.入境游客万人次的中位数应为与的平均数,大于万次,故正确;D.由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:D.【点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用三角函数的辅助角公式进行化简,求出函数的解析式,结合三角函数的单调性进行求解即可.【详解】∵,则函数的最大值为2,周期,的最大值与最小正周期相同,,得,则,当时,,则当时,得,即函数在,上的单调递增区间为,故答案为:.【点睛】本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间.14、30【解析】

先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.15、8.【解析】

利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.16、①【解析】

由三角形的正弦定理和边角关系可判断①;由零点存在定理和二次函数的图象可判断②;由,结合奇函数的定义,可判断③;由函数图象对称的特点可判断④.【详解】解:①在中,,故①正确;②函数在区间上存在零点,比如在存在零点,但是,故②错误;③对于函数,若,满足,但可能为奇函数,故③错误;④函数与的图象,可令,即,即有和的图象关于直线对称,即对称,故④错误.故答案为:①.【点睛】本题主要考查函数的零点存在定理和对称性、奇偶性的判断,考查判断能力和推理能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)极小值,极大值;(Ⅱ)或【解析】

(Ⅰ)根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,(Ⅱ)先分离变量,转化研究函数,,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围.【详解】(Ⅰ)由函数是偶函数,得,即对于任意实数都成立,所以.此时,则.由,解得.当x变化时,与的变化情况如下表所示:00↘极小值↗极大值↘所以在,上单调递减,在上单调递增.所以有极小值,有极大值.(Ⅱ)由,得.所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”.对函数求导,得.由,解得,.当x变化时,与的变化情况如下表所示:00↘极小值↗极大值↘所以在,上单调递减,在上单调递增.又因为,,,,所以当或时,直线与曲线,有且只有两个公共点.即当或时,函数在区间上有两个零点.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.18、(1);(2)见解析;(3)见解析【解析】

(1)需满足恒成立,只需即可;(2)根据的单调性,构造新函数,并令,根据的单调性即可得证;(3)将问题转化为证明有唯一实数解,对求导,判断其单调性,结合题目条件与不等式的放缩,即可得证.【详解】;令,则恒成立;,;的取值范围是;(2)证明:由(1)知,在上单调递减,在上单调递增;;令,;则;令,则;;;(3)证明:,,要证明有唯一实数解;当时,;当时,;即对于任意实数,一定有解;;当时,有两个极值点;函数在,,上单调递增,在上单调递减;又;只需,在时恒成立;只需;令,其中一个正解是;,;单调递增,,(1);;;综上得证.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数证明不等式,考查了转化思想、不等式的放缩,属难题.19、(1)(2);【解析】

(1)由代入中计算即可;(2)由余弦定理可得,所以,由,变形即可得到答案.【详解】(1)因为,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【点睛】本题考查二倍角公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.20、(1)证明见解析(2)证明见解析【解析】

(1)先由基本不等式可得,而,即得证;(2)首先推导出,再利用,展开即可得证.【详解】证明:(1),,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论