版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字电子技术根底12/25/20231本课程主要内容第一章数字逻辑根底第二章逻辑门电路根底第三章组合逻辑电路第四章触发器第五章时序逻辑电路第六章脉冲波形的产生与整形第七章半导体存储器第八章可编程器件与VHDL言语第九章模数与数模转换第十章数字系统设计12/25/20232第一章数字逻辑根底第一节概述第二节数制第三节各种数制之间的转换第四节码制第五节逻辑问题描画第六节逻辑代数根底第七节逻辑函数的五种描画方法第八节逻辑函数的化简12/25/20233作业1-41-51-61-131-171-1912/25/20234第一节概述一、模拟信号与数字信号模拟信号:在时间上和数值上都是延续的数字信号:在时间上和数值上都是离散的时间离散信号:在时间上离散,在数值上延续二、数字电路开展迅速,运用广泛电子计算机数码相机DVD12/25/20235三、数字电路的分析方法:与模拟电路完全不同,所采用的分析工具是逻辑代数12/25/20236第二节数制
12/25/20237信息技术计算机技术通讯技术传感器技术计算机技术的科学计算三大运用领域信息处置过程控制12/25/20238计算机技术最初运用的目的纯粹是为了计算所以我们首先研讨数制数制是计数的体制,计数的方法12/25/20239一、十进制〔一〕位置计数法
〔二〕多项式计数法数码:0、1、2、3、4、5、6、7、8、9基:10基:数码的个数计数规律:逢十进一12/25/202310二、二进制〔一〕位置计数法〔二〕多项式计数法
数码:0、1;基:2计数规律:逢二进一12/25/202311三、八进制〔一〕位置计数法
〔二〕多项式计数法数码:0、1、2、3、4、5、6、7基:8计数规律:逢八进一
12/25/202312四、十六进制〔一〕位置计数法
〔二〕多项式计数法数码:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F基:16计数规律:逢十六进一
12/25/202313数码记数规律基位权书写十进制0~9逢十进一1010i(N)D(N)10二进制0、1逢二进一22i(N)B(N)2八进制0~7逢八进一88i(N)O(N)8十六进制0~F逢十六进一1616i(N)H(N)16基:数码的个数本人可以构造恣意进制的数制12/25/202314五、恣意N进制的普通规律12/25/202315第三节各种数制之间的转换一、二进制-----十进制例1-1将二进制数10011.101转换成十进制数。解:将每一位二进制数乘以位权,然后相加,可得(10011.101)B=1×24+0×23+0×22+1×21+1×20+1×2-1+0×2-2+1×2-3=〔19.625)D12/25/202316例1-2将(37.41)D转化为二进制数,要求其误差不大于2-5。解:〔1〕整数部分:“除2取余〞延续“除2取余〞的过程直到商为0为止12/25/202317〔2〕小数部分:“乘2取整〞0.41×2=0.82………整数部分为00.82×2=1.64………整数部分为10.64×2=1.28………整数部分为10.28×2=0.56………整数部分为00.56×2=1.12………整数部分为1标题中要求其误差不大于2-5,即小数部分保管到-5位号。(37.41)D=〔100101.01101〕B直到小数部分为0为止12/25/202318二、八进制-----十进制例1-3将八进制数〔75.3〕o转换成十进制数。解:将每一位八进制数乘以位权,然后相加,可得〔75.3〕o=7×81+5×80+3×8-1=〔61.375)D12/25/202319例1-4将(44.375)D转化为八进制数。解:〔1〕整数部分:“除8取余〞延续“除8取余〞的过程直到商为0为止12/25/202320〔2〕小数部分:“乘8取整〞0.375×8=3.0………整数部分为3(44.375)D=(54.3)O直到小数部分为0为止12/25/202321三、十六进制-----十进制例1-5将十六进制数〔AF.1〕H转换成十进制数。解:将每一位十六进制数乘以位权,然后相加,可得〔AF.1〕H=10×161+15×160+1×16-1=〔175.0625)D
12/25/202322例1-6将(154.375)D转化为十六进制数。解:〔1〕整数部分:“除16取余〞延续“除16取余〞的过程直到商为0为止12/25/202323〔2〕小数部分:“乘16取整〞0.375×16=6.0………整数部分为6(154.375)D=(9A.6)H直到小数部分为0为止12/25/202324四、八进制----二进制二进制数和八进制数之间有很简单的对应关系,三位二进制数对应一位八进制数。对应关系如表所示。(374.26)O=(011111100.010110)B12/25/202325五、二进制----十六进制进制数和十六进制数之间有很简单的对应关系,四位二进制数对应一位十六进制数。对应关系如表所示。(AF4.76)H=(101011110100.01110110)B12/25/202326第四节码制计算机技术最初运用的目的纯粹是为了计算,后来ASCII码的引入使得文本成为计算机的新的处置对象数字系统中的信息:数值信息〔计算〕数制文字符号信息〔文本〕码制12/25/202327码制:编码的方法。编码,通俗地讲:起名字现实生活中,汉字的组合给每人一个代号数字系统中,器具有一定位数的二进制数码来表示文字符号信息的方法,即用一串bit给文字符号信息起名字,类似于人名,只不过在数字系统中用bit起名字:恣意,随意12/25/2023282n-1<N≤2nN表示信息的个数,用n表示二进制码的位数12/25/202329一、BCD码12/25/202330(258.369)D=(001001011000.001101101001)8421BCD=(010110001011.011010011100)余3码(13)D=(00010011)8421BCD=(1101)B=(01000111)余3码12/25/202331二、格雷码12/25/202332三、ASCII码ASCII码是国际上最通用的一种字符码,用7位二进制码来表示128个十进制数、英文大小写字母、控制符、运算符以及特殊符号12/25/202333第五节逻辑问题的描画一、自然界中三种根本逻辑关系:1、与逻辑关系:决议某一事物结果的一切条件同时具备,结果才会发生。这一因果关系称与逻辑关系2、或逻辑关系:决议某一事物结果的诸条件只需有一个条件具备,结果就会发生。这一因果关系称或逻辑关系3、非逻辑关系:决议某一事物结果的某一条件具备,结果就不发生。这一因果关系称非逻辑关系12/25/202334二、逻辑代数的由来用于逻辑分析的数学工具在逻辑学的根底上开展的一门学科,采用一套符号来描画逻辑思想,并将复杂的逻辑问题笼统为一种简单的符号演算,摆脱了冗繁的文字描画一套符号指的是用字母表示条件、结果,称做逻辑变量〔自变量、因变量〕,其取值只需两种能够,用符号0、1表示12/25/202335本卷须知:普通代数在逻辑代数之前产生为借用普通代数中的一些曾经很熟练的运算法那么,便于人门记住逻辑代数的一些运算规那么,我们在逻辑代数中习惯这样规定:用符号3、4等表示条件具备、不具备也未尝不可,但是用1、0与普通代数的某些运算规那么相一致条件具备用1表示、条件不具备用0表示,结果发生用1表示,结果不发生用0表示。反之也未尝不可,但是可以与普通代数的某些运算规那么相一致12/25/202336例1-7这是一个简单的开关串联电路当开关A和B同时闭合时,灯H亮也可以这么看:当开关A、开关B有任一个翻开时,灯H灭灯H亮、灯H灭,我们的目的不同,一个是想让灯如何亮;另一个是想让灯如何灭12/25/202337想让灯如何亮:当开关A和B同时闭合时,灯H亮
条件一:开关A闭合还是不闭合条件二:开关B闭合还是不闭合结果:灯H亮还是不亮条件具备:开关A闭合;条件不具备:开关A不闭合条件具备:开关B闭合;条件不具备:开关B不闭合结果发生:灯H亮;条件不具备:灯H不亮12/25/202338我们习惯:条件具备用1表示、条件不具备用0表示运算规那么与普通代数完全一样与逻辑关系与运算P=M·N=MN我们这样来进展逻辑笼统:用符号M表示条件一〔开关A闭合还是不闭合〕,用符号N表示条件二〔开关B闭合还是不闭合〕,用符号P表示结果〔灯H亮还是不亮〕。开关A闭合用符号1表示,开关A不闭合用符号0表示。开关B闭合用符号1表示,开关B不闭合用符号0表示。灯H亮用符号1表示,灯H不亮用符号0表示。12/25/202339条件一:开关A翻开还是不翻开条件二:开关B翻开还是不翻开结果:灯H灭还是不灭条件具备:开关A翻开;条件不具备:开关A不翻开条件具备:开关B翻开;条件不具备:开关B不翻开结果发生:灯H灭;结果不发生:灯H不灭想让灯如何灭:当开关A、开关B有任一个翻开时,灯H灭
12/25/202340想让灯如何灭:当开关A、开关B有任一个翻开时,灯H灭
我们习惯:条件具备用1表示、条件不具备用0表示运算规那么与普通代数稍有一样开关A开关B灯H不打开不打开不灭不打开打开灭打开不打开灭打开打开灭MNP000011101111或逻辑关系或运算P=M+N12/25/202341例1-8或逻辑关系或运算12/25/202342本人想?与逻辑关系与运算12/25/202343例1-9非运算为逻辑代数所特有商定:开关A用符号M表示,灯F用符号P表示。开关A翻开用符号0表示,开关A不翻开用符号1表示。灯F亮用符号1表示,灯F不亮用符号0表示。12/25/202344三、逻辑代数中的三种根本逻辑运算以及一些复合逻辑运算三种根本逻辑运算与运算或运算非运算12/25/202345复合逻辑运算与非12/25/202346或非12/25/202347异或一样为0,不同为1当异或门的一个输入端为0,比如B=0,输出信号L与输入信号A相等。当异或门的一个输入端为1,比如B=1,。输出信号L与输入信号A反相。12/25/202348同或一样为1,不同为0L=A⊙B12/25/202349与或非12/25/202350例1-10三个人表决一件事情,结果按“少数服从多数〞的原那么决议,试建立该逻辑函数。解:第一步:做商定:分析文字描画,找出逻辑问题的条件和结果,条件为自变量,结果为因变量。三个人的意见为条件,商定分别用A,B,C表示,结果为能否经过,用L表示。赞同用1表示,不赞同用0表示;结果能经过用1表示,不经过用0表示第二步:列出真值表12/25/20235112/25/202352第三步:从真值表写出逻辑表达式〔规范与或式〕〔最小项表达式〕12/25/202353第六节逻辑代数根底一、逻辑代数的根本定律12/25/202354A+AB=AA(A+B)=A(A+B)(A+C)=A+BC冗余定理:12/25/202355例1-11证明证:12/25/202356例1-12证明反演律〔1〕〔2〕证明:可分别列出两公式等号两边函数的真值表,由于等式两边真值表一样,那么等式成立。12/25/202357二、逻辑代数的三个根本规那么〔一〕代入规那么〔二〕反演规那么〔三〕对偶规那么12/25/202358对于任何一个成立的逻辑等式,假设将等式两边出现的某变量A,全部用另一个变量或变量的组合来替代,那么等式依然成立。这个规那么称为代入规那么。
〔一〕代入规那么12/25/202359〔二〕反演规那么1.反函数〔补函数〕的定义在输入变量的每一种组合下,它们的值均相反,那么称L1和L2互为反函数。12/25/2023602.求一个函数反函数的方法〔1〕从真值表直接写。〔2〕运用德摩根定理。〔3〕运用反演规那么直接写。12/25/2023613.反演规那么的内容:对于任何一个逻辑函数表达式L进展以下变换:将表达式中的运算符“·〞换成“+〞,“+〞换成“·〞;常量“0〞换成“1〞,“1〞换成“0〞;原变量换成反变量,反变量换成原变量,那么所得到新逻辑函数表达式就是函数L的反函数。12/25/2023624.运用反演规那么应留意的问题在运用反演规那么求反函数时要留意以下两点:一是维持原来的运算优先级不变,运算优先级要遵照“先括号,然后与运算,最后或运算〞的运算次序,必要时参与括号;二是将非号下整体当做一个变量〔即保管大非号不变,不属于单个变量上的非号坚持不变〕。12/25/202363例1-13求函数的反函数。解:由反演规那么可直接写出:例1-14求函数的反函数。解:由反演规那么可直接写出:12/25/2023641.对偶式的定义:L是一个逻辑表达式,对L进展以下变换:将表达式中的运算符“·〞换成“+〞,“+〞换成“·〞;常量“0〞换成“1〞,“1〞换成“0〞,所得新表达式叫做L的对偶式,用L′表示。求对偶式时要留意维持原来的运算优先级不变,运算优先级要遵照“先括号,然后与运算,最后或运算〞的运算次序,必要时参与括号。与反演规那么的内容相比,没有对变量的变换。〔三〕对偶规那么12/25/2023652.对偶规那么假设某个等式成立,那么等号两边表达式的各自的对偶式也是相等的。12/25/202366
例1-15知成立,利用对偶规那么证明成立。证明:的对偶式为A+B的对偶式为AB12/25/202367第七节逻辑函数的五种
描画方法一、真值表二、逻辑表达式三、逻辑电路图四、波形图五、卡诺图六、立方体表示法七、二叉判决图12/25/202368一、真值表三个人表决一件事情,结果按“少数服从多数〞的原那么决议,试建立该逻辑函数。解:做商定:分析文字描画,找出逻辑问题的条件和结果,条件为自变量,结果为因变量。三个人的意见为条件,商定分别用A,B,C表示,结果为能否经过,用L表示。赞同用1表示,不赞同用0表示;结果能经过用1表示,不经过用0表示12/25/202369二、逻辑表达式〔一〕最小项和最小项表达式1.最小项的定义在n个变量的逻辑函数中,假设某个乘积项为n个变量的“与〞,而且这n个变量均以原变量或反变量的方式出现一次,那么称这个乘积项为该函数的一个最小项〔minterm〕。12/25/20237012/25/2023712.最小项的编号把与某个最小项对应的那一组变量取值组合,原变量对应1,反变量对应0,把这样的一组变量取值组合人为看作二进制数〔位权恣意规定〕,与其对应的十进制数,就是该最小项的编号。12/25/2023723.最小项的根本性质〔1〕每一个最小项对应了一组变量取值组合。对于恣意一个最小项,只需对应的那一组取值组合使其值为1,而其他各种变量取值均使它的值为0。〔2〕恣意两个最小项之积恒为0。〔3〕全体最小项之和恒为1。12/25/2023734.最小项表达式〔规范与或式〕全部由最小项组成的“与或式〞称为逻辑函数的,也称为最小项表达式。任何一个逻辑函数的是独一的。12/25/202374例1-16将函数展开成最小项表达式。=m7+m6+m3+m1或者L〔A,C,B〕、L〔B,C,A〕、L〔B,A,C〕、L〔C,A,B〕、L〔C,B,A〕12/25/2023751.最大项的定义:在n个变量的逻辑函数中,假设M为n个变量的“或〞,而且这n个变量均以原变量或反变量的方式出现一次,那么称M为该组变量的最大项。〔二〕最大项和最大项表达式(自学)12/25/20237612/25/2023772.最大项的编号把与最大项对应的那一组变量取值组合,原变量对应0,反变量对应1,把这样的一组变量取值组合人为看作二进制数〔位权恣意规定〕,与其对应的十进制数,就是该最大项的编号。101M512/25/2023783.最大项的性质〔1〕n个变量的全部最大项的“与〞恒为0,即〔2〕n个变量的恣意两个不同的最大项的“或〞必等于1,即12/25/2023794.最小项与最大项之间的关系变量个数一样、编号一样的最小项和最大项之间存在互补关系,即12/25/2023805.最大项表达式——规范或与式
在一个“或与式〞中,假设一切的或项均为最大项,那么称这种表达式为最大项表达式,或称为规范或与式、规范和之积表达式。假设一个逻辑函数的真值表已给出,要写出该函数的最大项表达式,把函数值为0对应的变量取值组合挑出来,在变量取值组合中,0对应原变量,1对应反变量,写出对应的最大项,然后将这些最大项相“与〞,便得到最大项表达式。12/25/20238112/25/202382〔三〕两个最小项的逻辑相邻假设两个最小项中只需一个变量不同,其他的完全一样,那么称这两个最小项为逻辑相邻的最小项。对两个逻辑相邻的最小项做“或〞运算,可以消去那个不同的变量。12/25/202383〔四〕两个与项〔乘积项〕的逻辑相邻假设两个与项中只需一个变量不同,其他的完全一样,那么称这两个与项为逻辑相邻的与项。对两个逻辑相邻的与项做“或〞运算,可以消去那个不同的变量。12/25/202384三、卡诺图〔一〕卡诺图的构造1.两变量逻辑函数的卡诺图对最小项的编号采用了〔A,B〕的顺序12/25/2023852.三变量逻辑函数的卡诺图对最小项的编号采用了〔A,B,C〕的顺序12/25/2023863.四变量逻辑函数的卡诺图对最小项的编号采用了〔A,B,C,D〕的顺序12/25/2023874.五变量逻辑函数的卡诺图12/25/2023885.六变量逻辑函数的卡诺图12/25/202389〔二〕逻辑函数在卡诺图中的表示12/25/20239012/25/202391四、逻辑电路图12/25/202392五、时序图12/25/202393第八节逻辑函数的化简一、逻辑函数最简的规范本书采用的逻辑函数最简的规范是针对二级与或电路而言的首先乘积项的个数最少〔与门的个数最少,即或门的输入端数最少〕,然后,每个乘积项中的变量数目最少〔与门的输入端个数最少〕。特别提示读者留意的是,要首先满足前者,在满足前者的前提下,再满足后者。12/25/20239412/25/202395在最简与或表达式的根底上,得到函数的反函数的最简与或表达式,再求反,就得到最简或与表达式。在最简与或表达式的根底上,运用两次德摩根定理,就可以得到最简与非-与非表达式。在最简或与表达式的根底上,运用两次德摩根定理,就可以得到最简或非-或非表达式。在最简与或表达式的根底上,得到函数的反函数的最简与或表达式,再直接加上非号就得到最简与-或-非表达式。在最简与-或-非表达式的根底上,只对其中的与项两次求反,就可以得到最简或非-或非表达式。12/25/202396二、代数化简法12/25/202397例1-1712/25/202398解:例1-18化简逻辑函数:〔利用A+AB=A〕〔利用〕〔利用〕12/25/202399解:例1-19化简逻辑函数:〔利用反演律〕(利用)〔配项法〕〔利用A+AB=A〕〔利用A+AB=A〕〔利用〕12/25/2023100解法1:解法2:例1-20化简逻辑函数:12/25/2023101三、卡诺图化简法卡诺图化简得到函数的最简与或式〔一〕卡诺图的几何位置相邻在卡诺图中,察看恣意两个表示最小项的方块,假设有①相接〔紧挨着〕,或②相对〔恣意一行或一列的两头〕,或③相重〔对折起来重合〕,那么称这两个最小项为几何位置相邻。12/25/2023102研讨卡诺图的几何位置相邻的目的卡诺图中几何位置相邻的最小项在逻辑上也具有相邻性。逻辑相邻不容易察看,尤其是在较复杂的逻辑表达式中。但是卡诺图的几何位置相邻特别容易察看。12/25/2023103〔二〕卡诺图化简逻辑函数的根据卡诺图中几何位置相邻的最小项在逻辑上也具有相邻性诺图化简逻辑函数的根据依然是逻辑代数的根本定理12/25/202310412/25/2023105〔二〕用卡诺图化简逻辑函数的步骤〔1〕总是先从最孤单的最小项开场画圈,周围几何相邻的最小项较多的最小项稍后再思索。这样可以尽量防止出现多余的圈,即使是这样做了,也一定要进展步骤〔8〕,以保证绝对没有多余的圈。〔2〕尽量画大圈,要特别留意对边相邻性和四角相邻性。〔3〕每个圈内只能含有2n〔n=0,1,2,3,4,5,6〕个最小项,即只能将1个、或者2个、或者4个、或者8个、或者16个、或者32个、或者64个最小项圈入一个圈中。3个、5个、6个……等总数不是2n个的最小项不能圈入一个圈中。〔4〕圈的总个数尽量少。在圈的总个数最少的前提下,再保证每个圈是最大的圈。这与前面定义的逻辑函数的最简与-或表达式的规范相一致:首先乘积项的个数最少〔圈的总数最少〕,然后,每个乘积项中的变量数目最少〔圈最大〕。〔5〕方格中的1可以被反复运用,即最小项可以被
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度校服设计与校园文化建设合作协议3篇
- 二零二五年度科技企业股权回购担保合同2篇
- 2025年现代小区车棚租赁与经营合作协议3篇
- 2025年新型托盘标准制定与应用推广合同3篇
- 2025年新型手机品牌代理销售合同3篇
- 2025年旅游质量监控服务协议
- 2025版铝合金门窗行业标准化生产合同4篇
- 二零二五年现代农业合伙人分红协议书3篇
- 2025年农业产品加工厂合作农产品加工厂建设合同
- 2025年虾池承包养殖项目投资与合作协议5篇
- 常用静脉药物溶媒的选择
- 2023-2024学年度人教版一年级语文上册寒假作业
- 当代西方文学理论知到智慧树章节测试课后答案2024年秋武汉科技大学
- 2024年预制混凝土制品购销协议3篇
- 2024-2030年中国高端私人会所市场竞争格局及投资经营管理分析报告
- GA/T 1003-2024银行自助服务亭技术规范
- 《消防设备操作使用》培训
- 新交际英语(2024)一年级上册Unit 1~6全册教案
- 2024年度跨境电商平台运营与孵化合同
- 2024年电动汽车充电消费者研究报告-2024-11-新能源
- 湖北省黄冈高级中学2025届物理高一第一学期期末考试试题含解析
评论
0/150
提交评论