安徽省亳州地区2023年数学八上期末监测模拟试题含解析_第1页
安徽省亳州地区2023年数学八上期末监测模拟试题含解析_第2页
安徽省亳州地区2023年数学八上期末监测模拟试题含解析_第3页
安徽省亳州地区2023年数学八上期末监测模拟试题含解析_第4页
安徽省亳州地区2023年数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省亳州地区2023年数学八上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点在第()象限A.一 B.二 C.三 D.四2.边长为a,b的长方形,它的周长为14,面积为10,则ab+ab的值为()A.35 B.70 C.140 D.2803.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=7,AC=6,则△ACE的周长为()A.8 B.11 C.13 D.154.只用下列图形不能进行平面镶嵌的是()A.正六角形 B.正五边形 C.正四边形 D.正三边形5.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为()A.1.6×10﹣9米 B.1.6×10﹣7米 C.1.6×10﹣8米 D.16×10﹣7米6.若代数式有意义,则实数x的取值范围是A. B. C. D.且7.下列图形具有稳定性的是()A.梯形 B.长方形 C.直角三角形 D.平行四边形8.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°9.下列因式分解正确的是()A. B.C. D.10.如图,中,,的垂直平分线交于点,垂足为点.若,则的长为()A. B. C. D.11.在同一平面直角坐标系中,直线和直线的位置可能是()A. B.C. D.12.如图,在中,AD是角平分线,于点E,的面积为28,,,则AC的长是A.8 B.6 C.5 D.4二、填空题(每题4分,共24分)13.人体淋巴细胞的直径大约是0.000009米,将0.000009用科学计数法表示为__________.14.如图,在△ABC中,AB=AC,AB的垂直平分线DE交CA的延长线于点E,垂足为D,∠C=26°,则∠EBA=_____°.15.如图,,,,若,则的长为______.16.直线与轴的交点坐标是(,),则直线与坐标轴围成的三角形面积是_______.17.如图,两地相距千米,甲、乙两人都从地去地,图中和分别表示甲、乙两人所走路程(千米)与时间(小时)之间的关系,下列说法:①乙晚出发小时;②乙出发小时后追上甲;③甲的速度是千米/小时;④乙先到达地.其中正确的是__________.(填序号)18.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.20.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的位置如图所示.(1)若△ABC内有一点P(a,b)随着△ABC平移后到了点P′(a+4,b﹣1),直接写出A点平移后对应点A′的坐标.(2)直接作出△ABC关于y轴对称的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点)(3)求四边形ABC′C的面积.21.(8分)如图,和相交于点,并且,.(1)求证:.证明思路现在有以下两种:思路一:把和看成两个三角形的边,用三角形全等证明,即用___________证明;思路二:把和看成一个三角形的边,用等角对等边证明,即用________证明;(2)选择(1)题中的思路一或思路二证明:.22.(10分)如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.23.(10分)如图,在中,,的垂直平分线交于点,交于点.(1)若,求的长;(2)若,求证:是等腰三角形.24.(10分)(1)解方程:.(2)先化简:,再任选一个你喜欢的数代入求值.25.(12分)如图,四边形中,,,,是四边形内一点,是四边形外一点,且,,(1)求证:;(2)求证:.26.计算题(1)先化简,再求值:其中a=1.(2)解方程:

参考答案一、选择题(每题4分,共48分)1、A【分析】利用关于y轴对称的点的坐标特点求对称点,然后根据点的坐标在平面直角坐标系内的位置求解.【详解】解:点P(-3,5)关于y轴的对称点的坐标为(3,5).在第一象限故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2、B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a2b+ab2=ab(a+b),代入相应的数值,得.故本题应选B.3、C【分析】根据线段垂直平分线的性质得AE=BE,然后利用等线段代换即可得到△ACE的周长=AC+BC,再把BC=7,AC=6代入计算即可.【详解】∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+7=1.故选:C.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.4、B【分析】根据镶嵌的条件,判断一种正多边形能否镶嵌,要看周角360°能否被一个内角度数整除:若能整除,则能进行平面镶嵌;若不能整除,则不能进行平面镶嵌.【详解】解:A、正六边形的每个内角是120°,能整除360°,能密铺;B、正五边形每个内角是108°,不能整除360°,不能密铺;C、正四边形的每个内角是90°,能整除360°,能密铺;D、正三边形的每个内角是60°,能整除360°,能密铺.故选:B.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.5、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1纳米=10﹣9米,∴16纳米表示为:16×10﹣9米=1.6×10﹣8米.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、D【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且x≠1.故选D.7、C【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得答案.【详解】直角三角形具有稳定性,梯形、长方形、平行四边形都不具有稳定性.故选:C【点睛】本题考查三角形的性质之一,即三角形具有稳定性,掌握三角形的这一性质是快速解题的关键.8、D【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9、D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【详解】A没有把化为因式积的形式,所以A错误,B从左往右的变形不是恒等变形,因式分解是恒等变形,所以B错误,C变形也不是恒等变形所以错误,D化为几个因式的积的形式,是因式分解,所以D正确.故选D.【点睛】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.10、D【分析】由线段垂直平分线的性质解得,再由直角三角形中,30°角所对的直角边等于斜边的一半解题即可.【详解】是线段BC的垂直平分线,故选:D.【点睛】本题考查垂直平分线的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.11、C【分析】根据一次函数的性质,对k的取值分三种情况进行讨论,排除错误选项,即可得到结果.【详解】解:由题意知,分三种情况:当k>2时,y=(k-2)x+k的图象经过第一、二、三象限;y=kx的图象y随x的增大而增大,并且l2比l1倾斜程度大,故B选项错误,C选项正确;当0<k<2时,y=(k-2)x+k的图象经过第一、二、四象限;y=kx的图象y随x的增大而增大,A、D选项错误;当k<0时,y=(k-2)x+k的图象经过第二、三、四象限,y=kx的图象y随x的增大而减小,但l1比l2倾斜程度大.∴直线和直线的位置可能是C.故选:C.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.12、B【解析】过点D作于F,根据角平分线的性质可得DF=DE,然后利用的面积公式列式计算即可得解.【详解】过点D作于F,是的角平分线,,,,解得,故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.二、填空题(每题4分,共24分)13、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】将0.000009用科学记数法表示应是.

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、1【分析】先根据等边对等角求得∠ABC=∠C=26°,再利用三角形的外角的性质求得∠EAB=1°,再根据垂直平分线的性质得:EB=EA,最后再运用等边对等角,即可解答.【详解】解:∵AB=AC,∴∠ABC=∠C=26°,∵∠EAB=∠ABC+∠C=1°,∵DE垂直平分AB,∴EB=EA,∴∠EBA=∠EAB=1°,故答案为1.【点睛】本题考查了等腰三角形和垂直平分线的性质,其中掌握等腰三角形的性质是解答本题的关键.15、1【分析】作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【点睛】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.16、1【分析】根据直线与y轴交点坐标可求出b值,再求出与x轴交点坐标,从而计算三角形面积.【详解】解:∵与y轴交于(0,2),将(0,2)代入,得:b=2,∴直线表达式为:y=2x+2,令y=0,则x=-1,∴直线与x轴交点为(-1,0),令A(0,2),B(-1,0),∴△ABO的面积=×2×1=1,故答案为:1.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.17、:①③④【分析】根据函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,乙晚出发1小时,故①正确;∵3-1=2小时,∴乙出发2小时后追上甲,故②错误;∵12÷3=4千米/小时,∴甲的速度是4千米/小时,故③正确;∵相遇后甲还需8÷4=2小时到B地,相遇后乙还需8÷(12÷2)=小时到B地,∴乙先到达B地,故④正确;故答案为:①③④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【点睛】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.三、解答题(共78分)19、△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明见解析【解析】分析:由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.本题解析:△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).点睛:本题考查了等三角形的性质及全等三角形的判定,解题的关键是熟掌握全等三角形的判定定理.本题属于基础题,难度不大,解决该题型题目时,根据相等的边角关系利用全等三角形的判定定理证出结论是三角形全等是关键.20、(1)点A'(2,2);(2)详见解析;(3)5.5【分析】(1)根据平移的特点得出坐标即可;(2)根据轴对称的性质画出图形即可;(3)利用三角形的面积公式解答即可.【详解】解:(1)∵△ABC内有一点P(a,b)随着△ABC平移后到了点P′(a+4,b﹣1),点A(﹣2,3),∴点A'(2,2);(2)如图所示:(3)这里给到了网格图,所以直接补全所求面积为5×4的长方形,即可求得四边形ABC′C的面积=.【点睛】本题主要考查的是轴对称的变换以及相关的几何问题,这里需要注意得出正确的对应点,面积的计算借助网格图直接补全长方形即可求得最后答案.21、(1);;(2)证明详见解析.【分析】(1)思路一:可通过证明,利用全等三角形对应边相等可得;思路二:可通过证明利用等角对等边可得;(2)任选一种思路证明即可.思路二:利用SSS证明,可得,利用等角对等边可得.【详解】(1)(2)选择思路二,证明如下:在和中∴.∴.∴.【点睛】本题主要考查了全等三角形的判定与性质,还设计了等腰三角形等角对等边的性质,灵活利用全等三角形的性质是解题的关键.22、x=85°【分析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.【详解】解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【点睛】本题主要考查了平行线的性质和多边形的内角和知识点,属于基础题.23、(1);(2)见解析.【分析】(1)根据线段垂直平分线的性质可得EA=EB,即,结合可求出,进而得到CE的长;(2)根据三角形内角和定理和等腰三角形的性质求出∠C=72°,根据线段垂直平分线的性质可得EA=EB,求出∠EBA=∠A=36°,然后利用三角形外角的性质得到∠BEC=72°即可得出结论.【详解】解:(1)∵DE是AB的垂直平分线,∴EA=EB,∴,∵,∴,∴;(2)∵,,∴∠ABC=∠C=,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=36°,∴∠BEC=∠EBA+∠A=72°,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论