安徽亳州市第七中学2023年数学八上期末复习检测试题含解析_第1页
安徽亳州市第七中学2023年数学八上期末复习检测试题含解析_第2页
安徽亳州市第七中学2023年数学八上期末复习检测试题含解析_第3页
安徽亳州市第七中学2023年数学八上期末复习检测试题含解析_第4页
安徽亳州市第七中学2023年数学八上期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽亳州市第七中学2023年数学八上期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.比较,3,的大小,正确的是()A. B.C. D.2.几个同学包租一辆面包车去旅游,面包车的租价为元,后来又增加了两名同学,租车价不变,若设原来参加旅游的同学共有人,结果每个同学比原来少分摊元车费()A. B. C. D.3.如图,将矩形纸片ABCD折叠,AE、EF为折痕,点C落在AD边上的G处,并且点B落在EG边的H处,若AB=3,∠BAE=30°,则BC边的长为()A.3 B.4 C.5 D.64.若把分式(均不为0)中的和都扩大3倍,则原分式的值是()A.扩大3倍 B.缩小至原来的 C.不变 D.缩小至原来的5.如图,在等腰三角形ABC中,BA=BC,∠ABC=120°,D为AC边的中点,若BC=6,则BD的长为()A.3 B.4 C.6 D.86.如图,长和宽为a、b的长方形的周长为14,面积为10,则ab(a+b)的值为()A.140 B.70 C.35 D.247.在等腰中,,则的度数不可能是()A. B. C. D.8.小明和小刚相约周末到河北剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.设小明的速度为3x米/分,则根据题意所列方程正确的是()A. B.C. D.9.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等 B.不相等 C.互余或相等 D.互补或相等10.下列计算正确的是()A. B. C.3 D.11.如果,那么代数式的值为()A.1 B.2 C.3 D.412.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,正方形ODBC中,OB=,OA=OB,则数轴上点A表示的数是__________.14.十边形的外角和为________________________.15.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=50°,则∠BDA=________.16.多项式4x2+1加上一个单项式,使它成为一个整式的完全平方,则这个单项式可以是__________________.(填写符合条件的一个即可)17.已知,,则的值为_________.18.如图,,点在的内部,点,分别是点关于、的对称点,连接交、分别于点、;若的周长的为10,则线段_____.三、解答题(共78分)19.(8分)(1)计算题:①(a1)3•(a1)4÷(a1)5②(x﹣y+9)(x+y﹣9)(1)因式分解①﹣1a3+11a1﹣18a②(x1+1)1﹣4x1.20.(8分)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.21.(8分)计算或分解因式:(1)计算:;(2)分解因式:①;②22.(10分)已知:如图,在等腰三角形ABC中,120BAC180,ABAC,ADBC于点D,以AC为边作等边三角形ACE,ACE与ABC在直线AC的异侧,直线BE交直线AD于点F,连接FC交AE于点M.(1)求EFC的度数;(2)求证:FE+FA=FC.23.(10分)小冬与小夏是某中学篮球队的队员,在最近五场球赛中的得分如下表所示:第一场第二场第三场第四场第五场小冬10139810小夏11113111(1)根据上表所给的数据,填写下表:平均数中位数众数方差小冬10101.8小夏101131.4(1)根据以上信息,若教练选择小冬参加下一场比赛,教练的理由是什么?(3)若小冬的下一场球赛得分是11分,则在小冬得分的四个统计量中(平均数、中位数、众数与方差)哪些发生了改变,改变后是变大还是变小?(只要回答是“变大”或“变小”)()24.(10分)在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:,求代数式x2+的值.解:∵,∴=4即=4∴x+=4∴x2+=(x+)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求的值.解:令2x=3y=4z=k(k≠0)则根据材料回答问题:(1)已知,求x+的值.(2)已知,(abc≠0),求的值.(3)若,x≠0,y≠0,z≠0,且abc=7,求xyz的值.25.(12分)数学课上,同学们探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你解答下列问题:(1)已知:如图,在△ABC中,AB=AC,∠A=36°,直线BD平分∠ABC交AC于点D.求证:△ABD与△DBC都是等腰三角形;(2)在证明了该命题后,小乔发现:当∠A≠36°时,一些等腰三角形也具有这样的特性,即经过等腰三角形某一顶点的一条直线可以把该等腰三角形分成两个小等腰三角形.则∠A的度数为______(写出两个答案即可);并画出相应的具有这种特性的等腰三角形及分割线的示意图,并在图中标出两个小等腰三角形的各内角的度数.(3)接着,小乔又发现:其它一些非等腰三角形也具有这样的特性,即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形.请你画出一个具有这种特性的三角形的示意图,并在图中标出两个小等腰三角形的各内角的度数.26.如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】分别计算出,3,的平方,即可比较大小.【详解】解:,32=9,,∵7<8<9,∴,故选:C.【点睛】本题考查了实数大小比较,解决本题的关键是先算出3个数的平方,再比较大小.2、C【分析】用总车费除以人数得每人分摊的车费数,两者相减,利用分式的通分进行加减并化简即可.【详解】解:∵原来参加旅游的同学共有x人时,每人分摊的车费为元,

又增加了两名同学,租车价不变,则此时每人分摊的车费为元,∴每个同学比原来少分摊元车费:故选:C.【点睛】本题考查了列分式并进行分式的加减计算,掌握利用通分方法进行分式的加减计算是解题的关键.3、A【解析】利用三角函数求出直角三角形各边长度,再证明△AEC1和△CC1E是等边三角形,即可求出BC长度。【详解】解:连接CC1,如下图所示∵在Rt△ABE中,∠BAE=30,AB=3∴BE=AB×tan30°=1,AE=2,∴∠AEB1=∠AEB=60°由AD∥BC,得∠C1AE=∠AEB=60°∴△AEC1为等边三角形,∴△CC1E也为等边三角形,∴EC=EC1=AE=2∴BC=BE+EC=3所以A选项是正确的【点睛】本题考查直角三角形中的边角关系,属于简单题,关键会用直角三角函数求解直角边长。4、A【分析】将原式中x变成3x,将y变成3y,再进行化简,与原式相比较即可.【详解】由题意得,所以原分式的值扩大了3倍故选择A.【点睛】此题考察分式的化简,注意结果应化为最简分式后与原分式相比较.5、A【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【详解】解:∵BA=BC,∠ABC=120°,∴∠C=∠A=30°,∵D为AC边的中点,∴BD⊥AC,∵BC=6,∴BD=BC=3,故选:A.【点睛】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.6、B【分析】直接利用长方形面积求法以及长方形周长求法得出ab,a+b的值,进而得出答案.【详解】解:∵长和宽为a、b的长方形的周长为14,面积为10,∴2(a+b)=14,ab=10,则a+b=7,故ab(a+b)=7×10=1.故选:B.【点睛】此题主要考查了单项式乘以多项式,正确得出a+b的值是解题关键.7、C【分析】根据等腰三角形的定义,分是顶角还是底角3种情况进行讨论分析确定答案.【详解】当是顶角时,和是底角,,当和是底角时,是顶角,,当和是底角时,是顶角,.所以不可能是.故选:C.【点睛】考查等腰三角形的定义,确定相等的底角,注意分情况讨论,分类不要漏掉情况.8、A【分析】根据小明和小刚的速度比是3:4,小明的速度为3x米/分,则小刚的速度为4x米/分,再根据“结果小明比小刚提前4min到达剧院”关系式即可得出答案.【详解】小明和小刚的速度比是3:4,小明的速度为3x米/分小刚的速度为4x米/分小明用的时间为,小刚用的时间为所列方程应该为:故选A.【点睛】本题考查了分式方程的应用,读懂题意找到关系式是解题的关键.9、D【分析】作出图形,然后利用“HL”证明Rt△ABG和Rt△DEH全等,根据全等三角形对应角相等可得∠B=∠DEH,再分∠E是锐角和钝角两种情况讨论求解.【详解】如图,△ABC和△DEF中,AB=DE,BC=EF,AG、DH分别是△ABC和△DEF的高,且AG=DH,在Rt△ABG和Rt△DEH中,,∴Rt△ABG≌Rt△DEH(HL),∴∠B=∠DEH,∴若∠E是锐角,则∠B=∠DEF,若∠E是钝角,则∠B+∠DEF=∠DEH+∠DEF=180°,故这两个三角形的第三边所对的角的关系是:互补或相等.故选D.10、D【分析】先对各选项进行计算,再判断.【详解】A选项:不能直接相加,故错误;B选项:,故错误;C选项:3,故错误;D选项:,故正确;故选:D.【点睛】考查立方根、平方根和算术平方根的问题,关键是根据立方根、平方根和算术平方根的定义分析.11、A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.【详解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故选:A.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.12、B【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.二、填空题(每题4分,共24分)13、【解析】∵OB=,∴OA=OB=,∵点A在数轴上原点的左边,∴点A表示的数是−,故答案为:−.14、360°【分析】根据任何多边形的外角和都等于360°即可解答.【详解】解:∵任何多边形的外角和都等于360°∴十边形的外角和为360°故答案为:360°.【点睛】此题考查的是求多边形的外角和,掌握任何多边形的外角和都等于360°是解决此题的关键.15、25º【分析】由平行四边形的性质和折叠的性质可得AD∥BC,∠BDA=∠BDG,即可求解.【详解】∵将平行四边形ABCD沿对角线BD折叠,∴AD∥BC,∠BDA=∠BDG,∴∠1=∠ADG=50°,且∠ADG=∠BDA+∠BDG,∴∠BDA=25°,故答案为:25°.【点睛】本题考查了翻折变换,折叠的性质,平行四边形的性质,灵活运用折叠的性质是本题的关键.16、或或或【分析】由于多项式1x2+1加上一个单项式后能成为一个整式的完全平方,那么此单项式可能是二次项、可能是常数项,可能是一次项,还可能是1次项,分1种情况讨论即可.【详解】解:∵多项式1x2+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是1次项,①∵1x2+1-1x2=12,故此单项式是-1x2;②∵1x2+1±1x=(2x±1)2,故此单项式是±1x;③∵1x2+1-1=(2x)2,故此单项式是-1;④∵1x1+1x2+1=(2x2+1)2,故此单项式是1x1.故答案是-1x2、±1x、-1、1x1.17、【分析】先把二次根式进行化简,然后把,,代入计算,即可得到答案.【详解】解:=,∵,,∴原式=;故答案为:.【点睛】本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.18、1【分析】连接,,根据对称得出是等边三角形,进而得出答案.【详解】解:连接,,∵、分别是点关于直线、的对称点,,,,,,,CD=CE+EF+DF=PE+EF+PF=1,是等边三角形,.故答案为:1.【点睛】本题依据轴对称的性质,得出是等边三角形是解题关键.三、解答题(共78分)19、(1)①②x1﹣y1+18y﹣81(1)①﹣1a(a﹣3)1②(x+1)1(x﹣1)1【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;

②原式利用平方差公式变形,再利用完全平方公式展开即可;

(1)①原式提取公因式,再利用完全平方公式分解即可;

②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a14÷a10=a4;②原式=x1﹣(y﹣9)1=x1﹣y1+18y﹣81;(1)①原式=﹣1a(a﹣3)1;②原式=(x1+1+1x)(x1+1-1x)=(x+1)1(x﹣1)1.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)BE=8﹣2;(2)证明见解析;(3)+5+3.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴∠C=90°,CD=AB=6,AD=BC=8,∴DE=AD=8,在Rt△CDE中,CE=,∴BE=BC﹣CE=8﹣2;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD=90°,∵点M是Rt△CDE的斜边的中点,∴DM=CM,∴∠CDM=∠DCM,∴∠ADM=∠BCM在△ADM和△BCM中,,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,∴∠AMC=∠AMB+∠BMC=∠AMB+∠AMD=∠BMD=90°,∴AM⊥CM;(3)如图3中,过点Q作QG∥BP交BC于G,作点G关于AD的对称点G',连接QG',当点G',Q,M在同一条线上时,QM+BP最小,而PQ和BM是定值,∴此时,四边形PBMQ周长最小,∵QG∥PB,PQ∥BG,∴四边形BPQG是平行四边形,∴QG=BP,BG=PQ=5,∴CG=3,如图2,在Rt△BCD中,CD=6,BC=8,∴BD=10,∴BE=10,∴BG=BE﹣BG=5,CE=BE﹣BC=2,∴HM=1+3=4,HG=CD=3,在Rt△MHG'中,HG'=6+3=9,HM=4,∴MG'=,在Rt△CDE中,DE=,∴ME=,在Rt△BME中,BM==3,∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM=+5+3,【点睛】本题是一道四边形综合题,主要考查了矩形的性质、勾股定理、全等三角形的判定和性质、等腰三角形的性质,确定BP+QM的最小值是解答本题的关键.21、(1);(2)①;②【分析】(1)求出每一部分的值,再代入求出即可;(2)整理后再根据平方差公式分解即可.【详解】.解:(1)原式(2)①;②【点睛】本题考查了分解因式,绝对值,立方根,算术平方根等知识点的应用,熟悉概念和运算法则是解题关键.22、(1);(2)详见解析【分析】(1)根据等腰三角形的性质得出∠1=∠2,由直线AD垂直平分BC,求出FB=FC,根据等腰三角形的性质得出∠3=∠4,然后求出AB=AE,根据等腰三角形的性质得出∠3=∠5,等量代换求出即可得到;(2)在FC上截取FN,使FN=FE,连接EN,根据等边三角形的判定得出△EFN是等边三角形,求出∠FEN=60°,EN=EF,再求出∠5=∠6,根据SAS推出△EFA≌△ENC,根据全等得出FA=NC,即可证得结论.【详解】解:(1)如图1,∵,∴,∵,∴直线垂直平分,∴,∴,∴,即,∴在等边三角形中,,∴,∴,∴,∵,∴,∵在等边三角形中,,∴;(2)在上截取,使,连接,如图2,∵,∵,∴是等边三角形,∴,,∵为等边三角形,∴,,∴,∴,即,在和中,,∴,∴,∴.【点睛】本题考查了等腰三角形的判定和性质,线段垂直平分线的性质,等边三角形的判定和性质,全等三角形的判定和性质等,能综合运用知识点进行推理是解此题的关键.23、(1)中位数为10;众数为1;(1)小冬的得分稳定,能正常发挥;(3)平均数变大,方差变小【分析】(1)将小冬的成绩按照从大到小重新排列即可得到中位数,小夏的成绩中出现次数最多的数即是众数;(1)根据表格分析小冬与小夏的各项成绩,即可得到答案;(3)变化的应是平均数和方差,原来的平均数是10,增加得分11后平均数应是增大,方差变小了.【详解】解:(1)小冬各场得分由大到小排列为:13,10,10,9,8;于是中位数为10;小夏各场得分中,出现次数最多的得分为:1;于是众数为1,故答案为:10,1;(1)教练选择小冬参加下一场比赛的理由:小冬与小夏平均得分相同,小冬的方差小于小夏,即小冬的得分稳定,能正常发挥.(3)再比一场,小冬的得分情况从大到小排列为13,11,10,10,9,8;平均数:(13+11+10+10+9+8)=;中位数:10;众数:10;方差:S1=[(13﹣)1+(11﹣)1+(10﹣)1+(10﹣)1+(9﹣)1+(8﹣)1≈1.3.可见,平均数变大,方差变小.【点睛】此题考查统计数据的计算,正确计算中位数,众数,方差,并应用数据作判断是解题的关键.24、(1)5;(2);(3)【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设===k(k≠0),则a=5k,b=2k,c=3k,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设===(k≠0),化简得:①,②,③,相加变形可得x、y、z的代入=中,可得k的值,从而得结论;解法二:取倒数得:==,拆项得,从而得x=,z=,代入已知可得结论.【详解】解:(1)∵=,∴=4,∴x﹣1+=4,∴x+=5;(2)∵设===k(k≠0),则a=5k,b=2k,c=3k,∴===;(3)解法一:设===(k≠0),∴①,②,③,①+②+③得:2()=3k,=k④,④﹣①得:=k,④﹣②得:,④﹣③得:k,∴x=,y=,z=代入=中,得:=,,k=4,∴x=,y=,z=,∴xyz===;解法二:∵,∴,∴,∴,∴,将其代入中得:==,y=,∴x=,z==,∴xyz==.【点睛】本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.25、(1)见解析;(2)90°或108°或;(3)见解析【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°则可得AD=BD=CB∴△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论