版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年山东省泰安市高职分类数学摸底卷题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()
A.12种B.18种C.36种D.54种
2.在复平面内,复数z=i(-2+i)对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
3.双曲线(x²/17)-(y²/8)=1的右焦点的坐标为()
A.(0,5)B.(0,-5)C.(5,0)D.(-5,0)
4.将5封信投入3个邮筒,不同的投法共有()
A.5^3种B.3^5种C.3种D.15种
5.过点(-2,1)且平行于直线2x-y+1=0的直线方程为()
A.2x+y-1=0B.2x-y+5=0C.x-2y-3=0D.x-2y+5=0
6.“θ是锐角”是“sinθ>0”的()
A.充分不必条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
7.从1、2、3、4、5五个数中任取一个数,取到的数字是3或5的概率为()
A.1/5B.2/5C.3/5D.4/5
8.X>3是X>4的()
A.充分条件B.必要条件C.充要条件D.即不充分也不必要条件
9.在空间中,直线与平面的位置关系是()
A.平行B.相交C.直线在平面内D.平行、相交或直线在平面内
10.圆x²+y²-4x+4y+6=0截直线x-y-5=0所得弦长等于()
A.√6B.1C.5D.5√2/2
11.两个正方体的体积之比是1:8,则这两个正方体的表面积之比是()
A.1:2B.1:4C.1:6D.1:8
12.设a>b,c>d,则下列不等式成立的是()
A.ac>bdB.b+d
d/bD.a-c>b-d
13.抛物线y²=4x的焦点为()
A.(1,0)B.(2,0)C.(3,0)D.(4,0)
14.已知圆的方程为x²+y²-4x+2y-4=0,则圆的半径为()
A.±3B.3C.√3D.9
15.cos78°*cos18°+sin18°sin102°=()
A.-√3/2B.√3/2C.-1/2D.1/2
16.在一个口袋中有除了颜色外完全相同的5个红球3个黄球、2个蓝球,从中任意取出5个球,则刚好2个红球、2个黄球、1个蓝球的概率是()
A.2/5B.5/21C.1/2D.3/5
17.从2,3,5,7四个数中任取一个数,取到奇数的概率为()
A.1/4B.1/2C.1/3D.3/4
18.直线l₁的方程为x-√3y-√3=0,直线l₂的倾斜角为l₁倾斜角的2倍,且l₂经过原点,则l₂的方程为()
A.2x-√3y=0B.2x+√3y=0C.√3x+y=0D.√3x—y=0
19.定义在R上的函数f(x)是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于()
A.-1B.0C.1D.4
20.设lg2=m,lg3=n,则lg12可表示为()
A.m²nB.2m+nC.2m/nD.mn²
21.要得到函数y=cos2x的图象,只需将函数y=-sin2x的图象沿x轴()
A.向右平移Π/4个单位B.向左平移Π/4个单位C.向右平移Π/8个单位D.向左平移Π/8个单位
22.抛物线y²=8x,点P到点(2,0)的距离为3,则点P到直线x=-2的距离是()
A.2√2B.2C.3D.4
23.抛物线y²=4x上的一点P至焦点F的距离为3,则P到轴y的距离为()
A.4B.3C.2D.1
24.数轴上的点A到原点的距离是3,则点A表示的数为()
A.3或-3B.6C.-6D.6或-6
25.已知{an}是等差数列,a₁+a₂=4,a₇+a₈=28,则该数列前10项和S₁₀等于()
A.64B.100C.110D.120
26.若平面α//平面β,直线a⊂α,直线b⊂β那么直线a、b的位置关系是()
A.垂直B.平行C.异面D.不相交
27.若x,a,2x,b成等差数列,则a/b=()
A.1/2B.3/5C.1/3D.1/5
28.盒内装有大小相等的3个白球和1个黑球,从中摸出2个球,则2个球全是白球的概率是()
A.3/4B.2/3C.1/3D.1/2
29.函数y=2x-1的反函数为g(x),则g(-3)=()
A.-1B.9C.1D.-9
30.已知集合A={2,3,4},B={3,4,5},则A∩B()
A.{2,5}B.{2,3,4,5}C.{3,4}D.{3,5}
31.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()
A.3种B.4种C.7种D.12种
32.直线y=x+1与圆x²+y²=1的位置关系是()
A.相切B.相交但直线不过圆心C.直线过圆心D.相离
33.已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是().
A.6πB.8πC.10πD.12π
34.若某班有5名男生,从中选出2名分别担任班长和体育委员则不同的选法种数为()
A.5B.10C.15D.20
35.在等比数列{an}中,已知a₃,a₅是方程x²-12x+9=0的两个根,则a₄=()
A.12B.9C.±2√3D.±3
36.设奇函数f(x)是定义在R上的增函数,且f(-1)=2,且满足f(x²-2x+2)≥一2,则x的取值范围是()
A.ØB.(2,+∞)C.RD.(2,+∞)D∪(-∞,0)
37.不等式(x-1)(3x+2)解集为()
A.{x<-2/3或x>1}B.{-2/3<x<="x<=1}"d.{-1<x
38.已知向量a=(1,1),b=(0,2),则下列结论正确的是()
A.a//bB.(2a-b)⊥bC.2a=bD.a*b=3
39.参加一个比赛,需在4名老师,6名男学生和4名女学生中选一名老师和一名学生参加,不同的选派方案共有多少种?()
A.14B.30C.40D.60
40.已知一组样本数据是:7,5,11,9,8,则平均数和样本方差分别是()
A.6和8B.6和4C.8和4D.8和2
41.“0<x<1”是“x²
A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件
42.设集合A={1,2,3},B={1,2,4}则A的∪B=()
A.{1,2}B.{1,2,3}C.{1,2,4}D.{1,2,3,4}
43.在△ABC中,a=√3,b=2,c=1,那么A的值是()
A.Π/2B.Π/3C.Π/4D.Π/6
44.下列函数在区间(0,+∞)上为减函数的是()
A.y=3x-1B.f(x)=log₂xC.g(x)=(1/2)^xD.A(x)=sinx
45.以圆x²+2x+y²=0的圆心为圆心,半径为2的圆的方程()
A.(x+1)²+y²=2B.(x+1)²+y²=4C.(x−1)²+y²=2D.(x−1)²+y²=4
46.过点A(-1,1)且与直线l:x-2y+6=0垂直的直线方程为()
A.2x-y-1=0B.x-2y-1=0C.x+2y+1=0D.2x+y+1=0
47.若直线x+y=0与直线ax-2y+1=0互相垂直,则a的值为()
A.-2B.2C.-1D.1
48.log₁₀1000等于()
A.1B.2C.3D.4
49.在某次1500米体能测试中,甲、乙2人各自通过的测试的概率分别是2/5,3/4,只有一人通过的概率是()
A.3/5B.3/10C.1/20D.11/20
50.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条直线与一个平面平行,则另一条直线一定与这个平面平行.
A.0B.1C.2D.3
二、填空题(20题)51.已知二次函数y=x²-mx+1的图象的对称轴方程为=2则此函数的最小值为________。
52.若数列{an}的前n项和为Sn=n²+n,则an=________。
53.△ABC对应边分别为a、b、c,已知3b=4a,B=2A,则cosA=________。
54.以两直线x+y=0和2x-y-3=0的交点为圆心,且与直线2x-y+2=0相切的圆的标准方程方程是________。
55.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。
56.不等式x²-2x≤0的解集是________。
57.函数y=(cos2x-sin2x)²的最小正周期T=________。
58.过点(2,0)且与圆(x-1)²+(y+1)²=2相切的直线方程为________。
59.已知数据10,x,11,y,12,z的平均数为8,则x,y,z的平均数为________。
60.f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f(2x-3)的解集是________。
61.设圆的方程为x²+y²-4y-5=0,其圆心坐标为________。
62.已知数据x,8,y的平均数为8,则数据9,5,x,y,15的平均数为________。
63.设{an}是等差数列,且a₃=5,a₅=9,则a₂·a₆=()
64.数列x,2,y既是等差数列也是等比数列,则y/x=________。
65.已知函数y=f(x)是奇函数,且f(2)=−5,则f(−2)=_____________;
66.双曲线x²-y²=-1的离心率为_________________。
67.lg100-log₂1+(√3-1)=___________;
68.不等式3|x|<9的解集为________。
69.在关系式y=2x²+x+1中,可把_________看成_________的函数,其中_________是自变量,_________是因变量。
70.直线x+2y+1=0被圆(x一2)²+(y-1)²=25所截得的弦长为______。
三、计算题(10题)71.书架上有3本不同的语文书,2本不同的数学书,从中任意取出2本,求(1)都是数学书的概率有多大?(2)恰有1本数学书概率
72.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。
73.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)
74.解下列不等式:x²≤9;
75.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?
76.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
77.解下列不等式x²>7x-6
78.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。
79.已知tanα=2,求(sinα+cosα)/(2sinα-cosα)的值。
80.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;
参考答案
1.B[解析]讲解:3C₄²C₄²=18种
2.C
3.C
4.B[解析]讲解:由于每一封信都有三种选择,则共有3^5种方法
5.B
6.A由sinθ>0,知θ为第一,三象限角或y轴正半轴上的角,选A!
7.B
8.B
9.D
10.A由圆x²+y²-4x+4y+6=0,易得圆心为(2,-2),半径为√2.圆心(2,-2)到直线x-y-5=0的距离为√2/2.利用几何性质,则弦长为2√(√2)²-(√2/2)²=√6。考点:和圆有关的弦长问题.感悟提高:计算直线被圆截得弦长常用几何法,利用圆心到直线的距离,弦长的一半,及半径构成直角三角形计算,即公式d²+(AB/2)²=r²,d是圆到直线的距离,r是圆半径,AB是弦长.
11.B[解析]讲解:由于立方体的体积为棱长的立方,当体积比为1:8的时候,棱长比就应该为1:2,表面积又是六倍棱长的平方,所以表面积之比为1:4。
12.B本题是选择题可以采用特殊值法进行检验。因为a>b,c>d,所以设B=-1,a=-2,d=2,c=3,故选B.考点:基本不等式
13.A抛物线方程为y²=2px(p>0),焦点为(P/2,0),2p=4,p=2c,p/2=1。考点:抛物线焦点
14.B圆x²+y²-4x+2y-4=0,即(x-2)²+(y+1)²=9,故此圆的半径为3考点:圆的一般方程
15.D
16.B
17.D
18.D
19.B
20.B
21.A
22.A
23.C
24.A
25.B
26.D[解析]讲解:两面平行不会有交点,面内的直线也不可能相交,选D
27.B
28.D
29.A
30.C
31.D
32.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.
33.D立体图形的考核,底面为一个圆,周长知道了,求得半径为3,高可以用勾股定理求出为4,得出体积12π
34.D
35.D
36.C
37.B[解析]讲解:一元二次不等式的考察,不等式小于0,解集取两根之间无等号,答案选B
38.B
39.C
40.C
41.A
42.D
43.B
44.C[解析]讲解:考察基本函数的性质,选项A,B为增函数,D为周期函数,C指数函数当底数大于0小于1时,为减函数。
45.B[解析]讲解:圆的方程,重点是将方程化为标准方程,(x+1)²+y²=1,半径为2的话方程为(x+1)²+y²=4
46.D
47.B
48.C
49.D
50.C
51.-3
52.2n
53.2/3
54.(x-1)²+(y+1)²=5
55.40
56.[0,2]
57.Π/2
58.x+y-2=0
59.5
60.(3/2,3)
61.y=(1/2)x+2y
62.9
63.33
64.1
65.5
66.√2
67.3
68.(-3,3)
69.可把y看成x的函数,其中x是自变量,y是因变量.
70.4√5
71.解:(1)设3本不同的语文书为1,2,3,设2本不同的数学书为a,b从中任意取出2本为(m,n),如下:(1,2)(1,3)(1,a)(1,b)(2,3)(2,a)(2,b)(3,a)(3,b)(a,b)共10种,其中都是数学书的有(a,b)1种P=0.1(2)恰有1本数学书有(1,a)(1,b)(2,a)(2,b)(3,a)(3,b)6种P=0.6
72.5
73.解:(4/9)^½+(√3+√2)⁰+125^(-⅓)=((2/3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑原料供应居间合作合同版B版
- 2024年度联合体投标价格协调协议3篇
- 2024年建筑水电安装合作协议
- 2024年户外施工项目合作合同版B版
- 新冠疫情对急诊工作的影响计划
- 二零二四年烧烤店股权转让合同3篇
- 培养学生责任感的教育策略计划
- 特殊油罐租赁合同
- 2024年区域土地转让合同3篇
- 珠宝首饰采购人员聘用合同
- 科研伦理与学术规范期末考试
- 环境科学专业大学生职业生涯规划书
- 英语语言学(山东大学)智慧树知到课后章节答案2023年下山东大学(威海)
- 监理人员考勤表
- 基于单片机的电子跑表设计
- 第十四章 机械通气(急危重症护理学)
- 中小学班会课评价表
- 幼儿园故事课件:《胸有成竹》
- GB/T 10000-2023中国成年人人体尺寸
- PE给水管道水压试验记录表
- 数控铣床编程基础
评论
0/150
提交评论