2024届天津市红桥区名校八上数学期末复习检测模拟试题含解析_第1页
2024届天津市红桥区名校八上数学期末复习检测模拟试题含解析_第2页
2024届天津市红桥区名校八上数学期末复习检测模拟试题含解析_第3页
2024届天津市红桥区名校八上数学期末复习检测模拟试题含解析_第4页
2024届天津市红桥区名校八上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届天津市红桥区名校八上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.9的平方根是()A.3 B. C. D.2.如图,是宜宾市某周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是()A.最高气温是30℃B.最低气温是20℃C.出现频率最高的是28℃D.平均数是26℃3.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G4.如图,△ABC的两个外角的平分线相交于D,若∠B=50°,则∠ADC=(

)A.60° B.80° C.65° D.40°5.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是(

)A.12 B.10 C.8或10 D.66.如图,点B、E、C、F在一条直线上,△ABC≌△DEF则下列结论正确的是()A.AB∥DE,且AC不平行于DF. B.BE=EC=CFC.AC∥DF.且AB不平行于DE D.AB∥DE,AC∥DF.7.下列大学校徽主体图案中,是轴对称图形的是()A. B. C. D.8.等腰三角形的周长为,其中一边长为,则该等腰三角形的腰长为()A. B.或 C. D.9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1) B.(-1,) C.(,1) D.(-,-1)10.下列长度的三根木棒能组成三角形的是()A.2,3,4 B.2,2,4 C.2,3,6 D.1,2,4二、填空题(每小题3分,共24分)11.若点M(a﹣3,a+4)在x轴上,则点M的坐标是______.12.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s甲2__________s乙2(填“>”或“<”).13.因式分解:________.14.如图,将长方形沿对角线折叠,得到如图所示的图形,点的对应点是点,与交于点.若,,则的长是_____.15.一个多边形的内角和比其外角和的2倍多180°,则该多边形的边数是______16.化简:的结果是_______.17.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=6,则点P到BC的距离是_______.18.如图,,,,若,则的长为______.三、解答题(共66分)19.(10分)如图,在中,点M为BC边上的中点,连结AM,D是线段AM上一点(不与点A重合).过点D作,过点C作,连结AE.(1)如图1,当点D与M重合时,求证:①;②四边形ABDE是平行四边形.(2)如图2,延长BD交AC于点H,若,且,求的度数.20.(6分)已知:如图,在△ABC中,AB=2AC,过点C作CD⊥AC,交∠BAC的平分线于点D.求证:AD=BD.21.(6分)如图,在中,,,点是上一动点,连结,过点作,并且始终保持,连结.(1)求证:;(2)若平分交于,探究线段之间的数量关系,并证明.22.(8分)如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.初步探究(1)当AP=4时①直接写出点E的坐标;②求直线EF的函数表达式.深入探究(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.拓展应用(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.23.(8分)如图,在平面直角坐标系中,三个顶点的坐标分别是.(1)在图中画出关于轴对称的图形,并写出点C的对应点的坐标;(2)在图中轴上作出一点,使得的值最小(保留作图痕迹,不写作法)24.(8分)化简求值或解方程(1)化简求值:(2x−1x+1﹣x+1)÷x−2x2(2)解方程:6x2−125.(10分)计算:(1)(2)(3)(4)26.(10分)(1)问题原型:如图①,在锐角中,于点,在上取点,使,连结.求证:.(2)问题拓展:如图②,在问题原型的条件下,为的中点,连结并延长至点,使,连结.判断线段与的数量关系,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据平方根的定义,即可解答.【详解】解:∵,

∴实数9的平方根是±3,

故选:B.【点睛】本题考查了平方根,解决本题的关键是熟记平方根的定义.2、D【分析】根据折线统计图,写出每天的最高气温,然后逐一判断即可.【详解】解:由折线统计图可知:星期一的最高气温为20℃;星期二的最高气温为28℃;星期三的最高气温为28℃;星期四的最高气温为24℃;星期五的最高气温为26℃;星期六的最高气温为30℃;星期日的最高气温为22℃.这7天的最高气温是30℃,故A选项正确;这7天的最高气温中,最低气温是20℃,故B选项正确;这7天的最高气温中,出现频率最高的是28℃,故C选项正确;这7天最高气温的平均气温是(20+28+28+24+26+30+22)÷7=℃,故D选项错误.故选D.【点睛】此题考查的是根据折线统计图,掌握根据折线统计图解决实际问题和平均数公式是解决此题的关键.3、A【分析】三角形的重心即为三角形中线的交点,故重心一定在中线上,即可得出答案.【详解】解:如图由勾股定理可得:AN=BN=,BM=CM=∴N,M分别是AB,BC的中点∴直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.4、C【分析】利用三角形的外角定理及内角定理推出∠ADC与∠B的关系,进而代入数据求出结果.【详解】设的两个外角为、.则(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知,∴.故选:.【点睛】本题考查三角形的内角和定理及外角定理,熟记基本定理并灵活运用是解题关键.5、B【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.6、D【分析】根据题中条件△ABC≌△DEF,得出∠2=∠F,∠1=∠B,进而可得出结论.【详解】∵△ABC≌△DEF,在△ABC和△DEF中,∴AB=DE,BC=EF,AC=DF,∠2=∠F,∠1=∠B,∴AB∥DE,AC∥DF.所以答案为D选项.【点睛】本题主要考查了全等三角形的性质,熟练掌握相关概念是解题关键.7、C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项是轴对称图形,故本选项符合题意;D选项不是轴对称图形,故本选项不符合题意.故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.8、C【分析】此题分为两种情况:4cm是等腰三角形的底边或4cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:若4cm为等腰三角形的腰长,则底边长为18-4-4=10(cm),4+4=8<10,不符合三角形的三边关系;

若4cm为等腰三角形的底边,则腰长为(18-4)÷2=7(cm),此时三角形的三边长分别为7cm,7cm,4cm,符合三角形的三边关系;

∴该等腰三角形的腰长为7cm,

故选:C.【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.9、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.10、A【分析】根据三角形的三边关系“任意两边之和大于第三边”,进行分析.【详解】A、2+3>4,能够组成三角形;B、2+2=4,不能构成三角形;C、2+3<6,不能组成三角形;D、1+2<4,不能组成三角形.故选:A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.二、填空题(每小题3分,共24分)11、(-7,0)【分析】先根据x轴上的点的坐标的特征求得a的值,从而可以得到结果.【详解】由题意得a-3=0,a=3,则点M的坐标是(-7,0).【点睛】解题的关键是熟练掌握x轴上的点的纵坐标为0,y轴上的点的横坐标为0.12、>【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,结合气温统计图即可得出结论.【详解】解:由气温统计图可知:乙地的气温波动小,比较稳定∴乙地气温的方差小∴故答案为:>.【点睛】此题考查的是比较方差的大小,掌握方差的意义:方差越小则波动越小,稳定性也越好是解决此题的关键.13、【分析】根据因式分解的要求是将多项式分解为几个因式相乘的形式进行化简即可,注意要分解到不可分解为止.【详解】,故答案为:.【点睛】本题主要考查了对多项式的因式分解,熟练掌握公式法进行因式分解并确保将式子分解彻底是解决本题的关键.

错因分析较容易题.失分的原因是:1.因式分解不彻底,如;2.混淆平方差公式与完全平方差公式.

14、【详解】∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,AD∥BC,∴∠EAC=∠ACB,∵折叠,∴∠ACE=∠ACB,∴∠EAC=∠ACE,∴AE=CE,在Rt△DEC中,,设AE=x,∴,,故答案为:.【点睛】本题考查了翻折变换,矩形的性质的运用,平行线的性质的运用,等腰三角形的判定的运用,解答时灵活运用折叠的性质求解是关键.15、7【分析】设多边形的边数为n,根据多边形内角和公式及多边形外角和为360°,利用内角和比其外角和的2倍多180°列方程求出n值即可得答案.【详解】设多边形的边数为n,∵多边形的内角和比其外角和的2倍多180°,∴(n-2)×180°=2×360°+180°,解得:n=7,故答案为:7【点睛】此题主要考查了多边形内角和定理和外角和定理,若多边形的边数为n,则多边形的内角和为(n-2)×180°;多边形的外角和为360°;熟练掌握多边形的内角和公式是解题关键.16、【分析】根据分式混合运算的法则计算即可【详解】解:故答案为:【点睛】本题考查了分式混合运算,熟练掌握分式混合运算的法则是解题的关键17、3【解析】分析:过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等,可得PA=PE,PD=PE,那么PE=PA=PD,又AD=6,进而求出PE=3.详解:如图,过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=6,∴PA=PD=3,∴PE=3.故答案为3.点睛:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线是解题的关键.18、1【分析】作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【点睛】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.三、解答题(共66分)19、(1)①见解析;②见解析;(2).【分析】(1)①根据平行线的性质和中点性质即可得到ASA证明;②根据一组对边平行且相等即可证明四边形ABDE是平行四边形;(2)取线段HC的中点I,连接MI,根据中位线的判断与性质,可得,,即可求解.【详解】(1)①如图1中,∵,∴,∵,∴,∵AM是的中线,且D与M重合,∴,∴.②由①得,∴,∵,∴四边形ABDE是平行四边形.(2)如图2中,取线段HC的中点I,连接MI,∵,∴MI是的中位线,∴,,∵,且.∴,,∴.【点睛】此题主要考查平行线的性质、全等三角形的判定和性质、平行四边形的判定、中位线和三角函数,熟练掌握逻辑推理是解题关键.20、见解析.【分析】过D作DE⊥AB于E,根据角平分线的性质得出DE=DC,根据AAS证△DEA≌△DCA,推出AE=AC,利用等腰三角形的性质证明即可.【详解】证明:过D作DE⊥AB于E,∵AD平分∠BAC,CD⊥AC,∴DE=DC,在△DEA和△DCA中,,∴△DEA≌△DCA,∴AE=AC,∵2AC=AB∴AE=AC=BE∵AE⊥DE∴AD=BD【点睛】此题考查了等腰三角形的性质,全等三角形的性质和判定的应用,关键是求出△DEA≌△DCA,主要培养了学生分析问题和解决问题的能力,题目比较好,难度适中.21、(1)见解析;(2),见解析【分析】(1)根据SAS,只要证明∠1=∠2即可解决问题;

(2)结论:.连接FE,想办法证明∠ECF=90°,EF=DF,利用勾股定理即可解决问题.【详解】(1)∵,∴,又∵,∴,在△ABD和△ACE中,,∴△ABD≌△ACE;(2),理由如下:连接FE,∵,∴,由(1)知△ABD≌△ACE,∴,,∴,∴,∴,∵AF平分,∴,在△DAF和△EAF中,,∴△DAF≌△EAF,∴.∴.【点睛】本题是三角形综合题,主要考查了等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22、(1)①(0,5);②;(2)理由见解析;(3)周长=1,不会发生变化,证明见解析.【分析】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.【详解】(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即a2=(8﹣a)2+1,解得:a=5,故点E(0,5).故答案为:(0,5);②过点F作FR⊥y轴于点R,折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,∴∠AOP=∠EFR,而∠OAP=∠FRE,RF=AO,∴△AOP≌△FRE(AAS),∴ER=AP=4,OR=EO﹣OR=5﹣4=1,故点F(8,1),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线EF的表达式为:y=﹣x+5;(2)∵PE=OE,∴∠EOP=∠EPO.又∵∠EPH=∠EOC=90°,∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.即∠POC=∠OPH.又∵AB∥OC,∴∠APO=∠POC,∴∠APO=∠OPH;(3)如图,过O作OQ⊥PH,垂足为Q.由(1)知∠APO=∠OPH,在△AOP和△QOP中,∴△AOP≌△QOP(AAS),∴AP=QP,AO=OQ.又∵AO=OC,∴OC=OQ.又∵∠C=∠OQH=90°,OH=OH,∴△OCH≌△OQH(SAS),∴CH=QH,∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=1.故答案为:1.【点睛】此题主要考查了翻折变换的性质、正方形的性质以及全等三角形的判定与性质和勾股定理等知识,熟练利用全等三角形的判定得出对应相等关系是解题关键.23、(1)见解析;(2)见解析【分析】(1)利用轴对称的性质找出A1、B1、C1关于y轴对称点,再依次连接即可;(2)作点C关于x轴的对称点C2,连接B1C2,与x轴交点即为P.【详解】解:(1)如图,△A1B1C1即为所作图形,其中C1的坐标为(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论