版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省东莞市寮步宏伟初级中学中考数学押题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°2.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是()A. B. C. D.3.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国 B.厉 C.害 D.了4.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A. B. C. D.5.sin45°的值等于()A. B.1 C. D.6.山西有着悠久的历史,远在100多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo图案中,是轴对称图形的共有()A. B. C. D.7.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120° B.110° C.100° D.80°8.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为()A. B.C. D.9.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.510.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.8二、填空题(共7小题,每小题3分,满分21分)11.因式分解:=___.12.已知反比例函数的图像经过点,那么的值是__.13.如果当a≠0,b≠0,且a≠b时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.15.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.16.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G.若∠AGB=30°,则∠C=_______°.17.二次根式中字母x的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD.19.(5分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)20.(8分)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).21.(10分)解不等式组,并把它的解集表示在数轴上.22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?23.(12分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.(探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.(拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.24.(14分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:AC=BC=,AB=.∵()1+()1=()1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.2、A【解题分析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.3、A【解题分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【题目详解】∴有“我”字一面的相对面上的字是国.故答案选A.【题目点拨】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.4、D【解题分析】
先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【题目详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选:D.【题目点拨】本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.5、D【解题分析】
根据特殊角的三角函数值得出即可.【题目详解】解:sin45°=,故选:D.【题目点拨】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.6、D【解题分析】
根据轴对称图形的概念求解.【题目详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.
故选D.【题目点拨】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、D【解题分析】
先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【题目详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【题目点拨】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.8、B【解题分析】
根据第二象限中点的特征可得:,解得:.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征9、D【解题分析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【题目详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【题目点拨】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.10、B【解题分析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案为:(a-b)(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.12、【解题分析】
将点的坐标代入,可以得到-1=,然后解方程,便可以得到k的值.【题目详解】∵反比例函数y=的图象经过点(2,-1),
∴-1=
∴k=−;
故答案为k=−.【题目点拨】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答13、【解题分析】
把(1,4)代入两函数表达式可得:a+b=4,再根据“对偶直线”的定义,即可确定a、b的值.【题目详解】把(1,4)代入得:a+b=4又因为,,且,所以当a=1是b=3所以“对偶点”为(1,4)的一对“对偶直线”可以是:故答案为【题目点拨】此题为新定义题型,关键是理解新定义,并按照新定义的要求解答.14、【解题分析】
试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.考点:概率15、2【解题分析】分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC与△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案为2.点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.16、120【解题分析】
首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.【题目详解】由题意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案为:120.【题目点拨】本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识17、x≤1【解题分析】
二次根式有意义的条件就是被开方数是非负数,即可求解.【题目详解】根据题意得:1﹣x≥0,解得x≤1.故答案为:x≤1【题目点拨】主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、解答题(共7小题,满分69分)18、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.【解题分析】
(1)根据题意得出,即可得出结论;(2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.【题目详解】(1)解:四边形ACBD是菱形;理由如下:根据题意得:AC=BC=BD=AD,∴四边形ACBD是菱形(四条边相等的四边形是菱形);(2)证明:∵DE∥AB,BE∥CD,∴四边形BEDM是平行四边形,∵四边形ACBD是菱形,∴AB⊥CD,∴∠BMD=90°,∴四边形ACBD是矩形,∴ME=BD,∵AD=BD,∴ME=AD.【题目点拨】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.19、2.7米【解题分析】解:作BF⊥DE于点F,BG⊥AE于点G在Rt△ADE中∵tan∠ADE=,∴DE="AE"·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:这块宣传牌CD的高度为2.7米.20、(1)1;(2).【解题分析】
(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【题目详解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【题目点拨】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.21、不等式组的解是x≥3;图见解析【解题分析】
先求出每个不等式的解集,再求出不等式组的解集即可.【题目详解】解:∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式组的解是x≥3,在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.22、(1)80、72;(2)16人;(3)50人【解题分析】
(1)用步行人数除以其所占的百分比即可得到样本总人数:810%=80(人);用总人数乘以开私家车的所占百分比即可求出m,即m=8025%=20;用3600乘以骑自行车所占的百分比即可求出其所在扇形的圆心角:360(1-10%-25%-45%)=.(2)根据扇形统计图算出骑自行车的所占百分比,再用总人数乘以该百分比即可求出骑自行车的人数,补全条形图即可.(3)依题意设原来开私家车的人中有x人改为骑自行车,用x分别表示改变出行方式后的骑自行车和开私家车的人数,根据题意列出一元一次不等式,解不等式即可.【题目详解】解:(1)样本中的总人数为8÷10%=80人,∵骑自行车的百分比为1﹣(10%+25%+45%)=20%,∴扇形统计十图中“骑自行车”所在扇形的圆心角为360°×20%=72°(2)骑自行车的人数为80×20%=16人,补全图形如下:(3)设原来开私家车的人中有x人改骑自行车,由题意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【题目点拨】本题主要考查统计图表和一元一次不等式的应用。23、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析.【解题分析】
发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.【题目详解】[发现](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的长度为.故答案为;(2)设⊙P半径为r,则有r=2﹣3=3,当t=2时,如图3,点N与点A重合,∴PA=r=3,设MP与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重叠部分=S△APQPQ×AQ.即重叠部分的面积为.[探究]①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴点P的坐标为(3,0);②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴点P的坐标为(,0);③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP;∴点P的坐标为(,0);[拓展]t的取值范围是2<t≤3,2≤t<4,理由:如图4,当点N运动到与点A重合时,与Rt△ABO的边有一个公共点,此时t=2;当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t3,与Rt△ABO的边有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鼓号队活动总结
- 社区民政的工作总结
- 2023年初中政治教学计划表-初中政治教学计划(三篇)
- 下半年工作计划
- 办公室行政个人年终总结
- 护理大专自我鉴定
- 2021学院军训活动总结5篇
- 关于调查问卷和的制作
- 六单元写作《发挥联想和想象》课件
- 《肺动脉高压的护理》课件
- 现代高层写字楼的创新管理和增值服务
- GB/T 35792-2018风力发电机组合格测试及认证
- GB/T 22085.2-2008电子束及激光焊接接头缺欠质量分级指南第2部分:铝及铝合金
- GB/T 19492-2020油气矿产资源储量分类
- GB/T 1933-1991木材密度测定方法
- GB 25501-2019水嘴水效限定值及水效等级
- 高教版中职语文(基础模块)上册写作《记叙文-人物描写(片段)》课件1
- PEP-3心理教育量表-评估报告
- 储运作业活动清单
- 培智一年级第一册生活数学试卷
- 气体灭火系统气体钢瓶检测充装技术文件
评论
0/150
提交评论