




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省青岛4中八年级数学第一学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列各组数中,是勾股数的是()A. B. C. D.2.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20 B.30和25 C.30和22.5 D.30和17.53.若使某个分式无意义,则这个分式可以是()A. B. C. D.4.如图,下列推理及所证明的理由都正确的是()A.若,则,理由是内错角相等,两直线平行B.若,则,理由是两直线平行,内错角相等C.若,则,理由是内错角相等,两直线平行D.若,则,理由是两直线平行,内错角相等5.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为()A.13cm B.17cm C.13或17cm D.10cm6.如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为()A.26cm B.24cm C.20cm D.18cm7.已知小明从地到地,速度为千米/小时,两地相距千米,若用(小时)表示行走的时间,(千米)表示余下的路程,则与之间的函数表达式是()A. B. C. D.8.化简的结果是()A. B. C. D.9.若4x2+m+9y2是一个完全平方式,那么m的值是()A.6xy B.±12xy C.36xy D.±36xy10.如果点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,则m=()A.4 B.﹣4 C.5 D.﹣5二、填空题(每小题3分,共24分)11.一种植物果实像一个微笑的无花果,质量只有0.000000076克,该质量请用科学记数法表示_____克.12.某种病毒的直径是0.00000008米,这个数据用科学记数法表示为__________米.13.若a+b=3,则代数式(-a)÷=_____________.14.已知x+y=1,则x²xyy²=_______15.把分式与进行通分时,最简公分母为_____.16.如图,如果你从点向西直走米后,向左转,转动的角度为°,再走米,再向左转40度,如此重复,最终你又回到点,则你一共走了__________米.17.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.18.已知一个角的补角是它余角的3倍,则这个角的度数为_____.三、解答题(共66分)19.(10分)观察下列一组等式,然后解答后面的问题,,,(1)观察以上规律,请写出第个等式:为正整数).(2)利用上面的规律,计算:(3)请利用上面的规律,比较与的大小.20.(6分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.21.(6分)如图,点,,,在一条直线上,,,.求证:.22.(8分)定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.(1)“距离坐标”为1,0的点有个;(2)如图2,若点M在过点O且与直线AB垂直的直线l上时,点M的“距离坐标”为p,q,且BOD150,请写出p、q的关系式并证明;(3)如图3,点M的“距离坐标”为,且DOB30,求OM的长.23.(8分)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.24.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.25.(10分)在日常生活中,取款、上网等都需要密码.有一种用“因式分解”法设计的密码.原理是:如:多项式因式分解的结果是,若取时,则各个因式的值是:,将3个数字按从小到大的顺序排列,于是可以把“400804”作为一个六位数的密码.对于多项式,当时,写出用上述方法产生的密码,并说明理由.26.(10分)如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.(1)利用尺规作图作出点D,不写作法但保留作图痕迹.(2)若△ABC的底边长5,周长为21,求△BCD的周长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】满足a2+b2=c2的三个正整数,称为勾股数,由此求解即可.【详解】A、∵72+82≠92,∴此选项不符合题意;B、∵62+82≠112,∴此选项不符合题意;C、∵52+122≠142,此选项不符合题意;D、∵42+32=52,∴此选项符合题意.故选:D.【点睛】此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…2、C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、B【分析】根据分式无意义的条件,对每个式子进行判断,即可得到答案.【详解】解:A、由,得,故A不符合题意;B、由,得,故B符合题意;C、由,得,故C不符合题意;D、由,得,故D不符合题意;故选:B.【点睛】本题考查了分式无意义的条件,解题的关键是掌握分式无意义的条件,即分母等于0.4、D【分析】根据平行线的性质与判定定理逐项判断即可.【详解】解:A、若,则,理由是两直线平行,内错角相等,故A错误;B、若,不能判断,故B错误;C、若,则,理由是两直线平行,内错角相等,故C错误;D、若,则,理由是两直线平行,内错角相等,正确,故答案为:D.【点睛】本题考查了平行线的性质与判定定理,解题的关键是熟练掌握平行线的性质与判定定理.5、B【详解】由题意得:三角形的三边可能为3、3、7或3、7、7,然后根据三角形的三边关系可知只能是3、7、7,∴周长为3+7+7=17cm.故选B.6、D【分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【详解】解:∵AC=4cm,若△ADC的周长为13cm,∴AD+DC=13﹣4=9(cm).又∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选D.7、D【分析】根据路程=速度×时间,结合“剩下的路程=全路程-已行走”容易知道y与x的函数关系式.【详解】∵剩下的路程=全路程-已行走,∴y=3-4x.故选:D.【点睛】本题主要考查了一次函数的应用,理清“路程、时间、速度”的关系是解答本题的关键.8、D【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.9、B【分析】利用完全平方公式的结构特征判断即可.【详解】解:∵4x2+m+9y2=(2x)2+m+(3y)2是一个完全平方式,∴m=±12xy,故选:B.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的特点是解本题的关键.10、B【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列出方程求解即可.【详解】解:∵点(m﹣1,﹣1)与点(5,﹣1)关于y轴对称,∴m﹣1=﹣5,解得m=﹣1.故选:B.【点睛】本题考查了关于y轴对称的点的坐标特征,掌握关于y轴对称的点的坐标特征是横坐标互为相反数是解题的关键.二、填空题(每小题3分,共24分)11、7.6×10﹣1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故答案为:.【点睛】本题考查了科学记数法的应用,掌握科学记数法的概念以及应用是解题的关键.12、【分析】把一个数表示成a与10的n次幂相乘的形式这种记数法叫做科学记数法,以此可得.【详解】,故答案为:1×10-1.【点睛】本题考查科学记数法的知识点,熟练掌握科学记数法的记数法是本题的关键.13、-3【分析】按照分式的运算法则进行运算化简,然后再把a+b=3代入即可求值.【详解】解:原式,又,∴原式=,故答案为.【点睛】本题考查了分式的加减乘除运算法则及化简求值,熟练掌握分式的运算法则是解决本题的关键.14、【分析】根据完全平方公式即可得出答案.【详解】∵x+y=1∴∴【点睛】本题考查的是完全平方公式:.15、(x﹣y)2(x+y)【分析】根据因式分解可得,,然后根据最简公分母的定义进行分析即可得出答案.【详解】解:把分式与进行通分时,x2﹣y2=(x+y)(x﹣y),故最简公分母为:(x﹣y)2(x+y).故答案为:(x﹣y)2(x+y).【点睛】本题主要考察了最简公分母的定义,解题的关键是对分母进行因式分解.16、1.【分析】根据题意转动的角度为°,结合图我们可以知道,最后形成的正多边形的一个外角是40°,利用多边形的外角和可求出是正几边形,即可求得一共走了多少米.【详解】解:360°÷40=9(边)9×25=1(米)故答案为:1【点睛】本题主要考查的是正多边形的性质以及多边形的外角和公式,掌握以上两个知识点是解题的关键.17、.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果:【详解】∵甲每分钟行驶12÷30=(千米),乙每分钟行驶12÷12=1(千米),∴每分钟乙比甲多行驶1-(千米)则每分钟乙比甲多行驶千米故答案为18、45°【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.三、解答题(共66分)19、(1);(2)9;(3)【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第个等式为;故答案为;(2)原式;(3),,,.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.20、(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.21、见解析【分析】根据得出,根据平行得出,,从而得出三角形全等.【详解】证明:∵,∴.∵,∴,∴在和中,∴.∴.【点睛】本题考查了三角形全等的判定定理、平行线的性质定理,能够熟练运用性质定理是解题的关键.22、(1)2;(2);(3)【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M作MN⊥CD于N,根据已知得出,,求出∠MON=60°,根据含30度直角三角形的性质和勾股定理求出即可解决问题;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点,首先证明,求出,,然后过作,交延长线于,根据含30度直角三角形的性质求出,,再利用勾股定理求出EF即可.【详解】解:(1)由题意可知,在直线CD上,且在点O的两侧各有一个,共2个,故答案为:2;(2)过作于,∵直线于,,∴,∵,,∴,∴,∴;(3)分别作点关于、的对称点、,连接、、,连接、分别交、于点、点.∴,,∴,,,∴,∴△OEF是等边三角形,∴,∵,,∴,,∵,∴,过作,交延长线于,∴,在中,,则,在中,,,∴,∴.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.23、(1)(,2);(2)y=x﹣;(3)E的坐标为(,)或(6,8)【分析】(1)把点E的纵坐标代入直线解析式,求出横坐标,得到点E的坐标,根据融合点的定义求求解即可;
(2)设点E的坐标为(a,a+2),根据融合点的定义用a表示出x、y,整理得到答案;
(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E是直线y=x+2上一点,点E的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8)【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.24、(3)(﹣3,3);(3)作图见解析(3)(﹣3,3).【解析】试题分析:(3)关于y轴对称的点坐标是纵坐标相同,横坐标互为相反数,(3)分别将三个顶点A、O、B,向左
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧物流技术与实务 教案全套 潘艳君 项目1-6 智慧物流概述-智慧物流的综合应用
- 2025年环保产业园区产业集聚与协同发展中的环保产业绿色技术创新报告
- 2025年工业互联网平台数据清洗算法在智能教育领域的应用对比报告
- 金融与投资行业洞察报告:2025年金融科技在金融衍生品交易中的应用与创新
- 美妆行业个性化定制服务模式在美妆行业市场拓展中的应用报告
- 2025年工业互联网平台RFID技术在智能工厂生产安全风险控制中的应用报告
- 做微商的心得体会经典十四篇
- 无人机传感器技术 8.1.陀螺仪在航空领域及无人机飞控中的应用
- 无人看守设备管理制度
- ktv安全风险管理制度
- 免疫检验 免疫应答之 非特异性免疫
- 国家临床重点专科试点评分标准
- 信息系统安全措施应急处理预案范文(八篇)
- 《酒店财务管理实务》课后参考答案
- 光伏发电项目施工组织设计
- 小品剧本最后一堂课
- 现场急救知到章节答案智慧树2023年福建警察学院
- 电子汽车衡作业指导书
- 电缆电缆采购合同范本(汇编6篇)
- 继电保护装置整定记录
- 2022年北京市朝阳区幼儿园教师招聘笔试《幼儿保教知识与能力》试题及答案解析
评论
0/150
提交评论