2024届湖北省来凤县中考数学模拟试题含解析_第1页
2024届湖北省来凤县中考数学模拟试题含解析_第2页
2024届湖北省来凤县中考数学模拟试题含解析_第3页
2024届湖北省来凤县中考数学模拟试题含解析_第4页
2024届湖北省来凤县中考数学模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省来凤县中考数学模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为()A.152元 B.156元 C.160元 D.190元2.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°-α B.90°+α C. D.360°-α3.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A.27.1×102B.2.71×103C.2.71×104D.0.271×1054.对于数据:6,3,4,7,6,0,1.下列判断中正确的是()A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是75.(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)

25

26

27

28

天数

1

1

2

3

则这组数据的中位数与众数分别是()A.27,28 B.27.5,28 C.28,27 D.26.5,276.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A. B. C. D.7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54° B.64° C.74° D.26°8.下列各式属于最简二次根式的有()A. B. C. D.9.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游10.若,则括号内的数是A. B. C.2 D.811.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.12.下列实数中,在2和3之间的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.14.四边形ABCD中,向量_____________.15.若a+b=5,ab=3,则a2+b2=_____.16.已知二次函数的图像与轴交点的横坐标是和,且,则________.17.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.18.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.20.(6分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.21.(6分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)22.(8分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.求11月份这两种水果的进价分别为每千克多少元?时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.23.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.24.(10分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.25.(10分)某船的载重为260吨,容积为1000m1.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m1,乙种货物每吨体积为2m1,若要充分利用这艘船的载重与容积,求甲、乙两种货物应各装的吨数(设装运货物时无任何空隙).26.(12分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.27.(12分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.【题目详解】设进价为x元,依题意得240×0.8-x=20x℅解得x=160所以,进价为160元.故选C【题目点拨】本题考核知识点:列方程解应用题.解题关键点:找出相等关系.2、C【解题分析】试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选C.考点:1.多边形内角与外角2.三角形内角和定理.3、C【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】将27100用科学记数法表示为:.2.71×104.故选:C.【题目点拨】本题考查科学记数法—表示较大的数。4、C【解题分析】

根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【题目详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1,这组数据的平均数是:中位数是6,故选C.【题目点拨】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列,正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.5、A【解题分析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,∴众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28∴中位数是27∴这周最高气温的中位数与众数分别是27,28故选A.6、A【解题分析】试题解析:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故选B.考点:1.切线的性质;3.矩形的性质.7、B【解题分析】

根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【题目详解】∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【题目点拨】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.8、B【解题分析】

先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【题目详解】A选项:,故不是最简二次根式,故A选项错误;B选项:是最简二次根式,故B选项正确;C选项:,故不是最简二次根式,故本选项错误;D选项:,故不是最简二次根式,故D选项错误;

故选:B.【题目点拨】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.9、C【解题分析】

直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【题目详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;

B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;

C选项:两个班的最高分无法判断出现在哪个班,错误;

D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;

故选C.【题目点拨】考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.10、C【解题分析】

根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【题目详解】解:,

故选:C.【题目点拨】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.11、A。【解题分析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。此时,由AB=2,根据勾股定理,得弦AP=x=。∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。又∵当AP=x=1时,△APO为等边三角形,它的面积y=,∴此时,点(1,)应在y=的一半上方,从而可排除C选项。故选A。12、C【解题分析】

分析:先求出每个数的范围,逐一分析得出选项.详解:A、3<π<4,故本选项不符合题意;

B、1<π−2<2,故本选项不符合题意;

C、2<<3,故本选项符合题意;

D、3<<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、85【解题分析】

根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【题目详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【题目点拨】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.14、【解题分析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得:==.故答案为.点睛:理解向量运算的三角形法则是正确解答本题的关键.15、1【解题分析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.16、-12【解题分析】

令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.【题目详解】解:∵二次函数的图像与轴交点的横坐标是和,令y=0,得方程,则和即为方程的两根,∴,,∵,两边平方得:,∴,即,解得:,故答案为:.【题目点拨】本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.17、1.【解题分析】

根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【题目详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【题目点拨】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.18、且【解题分析】试题解析:∵一元二次方程有两个不相等的实数根,∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程方程有两个不相等的实数根时:三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解题分析】

由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【题目详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【题目点拨】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.20、(1)18;(2)中位数;(3)100名.【解题分析】【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【题目详解】(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【题目点拨】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.21、(1)开通隧道前,汽车从A地到B地要走(80+40)千米;(2)汽车从A地到B地比原来少走的路程为[40+40(﹣)]千米.【解题分析】

(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【题目详解】(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC=(千米),AC+BC=80+(千米),答:开通隧道前,汽车从A地到B地要走(80+)千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+﹣40﹣=40+40(千米).答:汽车从A地到B地比原来少走的路程为[40+40]千米.【题目点拨】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解题分析】

(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有,解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.23、(1)见解析;(1)70°.【解题分析】

(1)根据全等三角形的判定即可判断△AEC≌△BED;

(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.【题目详解】证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠1.又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∴△AEC≌△BED(ASA).(1)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.【题目点拨】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.24、(1)y=﹣x﹣1;(1)△ACE的面积最大值为;(3)M(1,﹣1),N(,0);(4)满足条件的F点坐标为F1(1,0),F1(﹣3,0),F3(4+,0),F4(4﹣,0).【解题分析】

(1)令抛物线y=x1-1x-3=0,求出x的值,即可求A,B两点的坐标,根据两点式求出直线AC的函数表达式;

(1)设P点的横坐标为x(-1≤x≤1),求出P、E的坐标,用x表示出线段PE的长,求出PE的最大值,进而求出△ACE的面积最大值;

(3)根据D点关于PE的对称点为点C(1,-3),点Q(0,-1)点关于x轴的对称点为M(0,1),则四边形DMNQ的周长最小,求出直线CM的解析式为y=-1x+1,进而求出最小值和点M,N的坐标;

(4)结合图形,分两类进行讨论,①CF平行x轴,如图1,此时可以求出F点两个坐标;②CF不平行x轴,如题中的图1,此时可以求出F点的两个坐标.【题目详解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直线AC的函数解析式是(1)设P点的横坐标为x(﹣1≤x≤1),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P点在E点的上方,∴当时,PE的最大值△ACE的面积最大值(3)D点关于PE的对称点为点C(1,﹣3),点Q(0,﹣1)点关于x轴的对称点为K(0,1),连接CK交直线PE于M点,交x轴于N点,可求直线CK的解析式为,此时四边形DMNQ的周长最小,最小值求得M(1,﹣1),(4)存在如图1,若AF∥CH,此时的D和H点重合,CD=1,则AF=1,于是可得F1(1,0),F1(﹣3,0),如图1,根据点A和F的坐标中点和点C和点H的坐标中点相同,再根据|HA|=|CF|,求出综上所述,满足条件的F点坐标为F1(1,0),F1(﹣3,0),,.【题目点拨】属于二次函数综合题,考查二次函数与轴的交点坐标,待定系数法求一次函数解析式,二次函数的最值以及平行四边形的性质等,综合性比较强,难度较大.25、这艘船装甲货物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论