版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题十一《立体几何》讲义11.1空间几何体知识梳理.空间几何体1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.eq\a\vs4\al(1.简单几何体,1多面体的结构特征)名称棱柱棱锥棱台图形底面互相平行且相等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球▲图形母线互相平行且相等,垂直于底面长度相等且相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环4.空间几何体的表面积与体积公式名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=eq\f(1,3)Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=eq\f(1,3)(S上+S下+eq\r(S上S下))h球S=4πR2V=eq\f(4,3)πR3题型一.正方体的展开与折叠问题1.如图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A.B.C. D.2.如图是表示一个正方体表面的一种平面展开图,图中的四条线段AB、CD、EF和GH在原正方体中不相交的线段的对数为()A.2 B.3 C.4 D.53.如图是一个正方体的平面展开图,则在该正方体中()A.AE∥CD B.CH∥BE C.DG⊥BH D.BG⊥DE题型二.多面体表面最短距离问题1.如图,正三棱锥S﹣ABC中,∠BSC=40°,SB=2,一质点自点B出发,沿着三棱锥的侧面绕行一周回到点B的最短路线的长为()A.2 B.3 C.23 D.2.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为1cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为()cm.A.12 B.13 C.61 D.153.如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A,求绳子最短时,顶点到绳子的最短距离(用x表示).
题型三.截面问题1.如图,若Ω是长方体ABCD﹣A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是()A.EH∥FG B.EF∥HG C.Ω是棱柱 D.Ω是棱台2.(2018·全国1)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.334 B.233 C.3.已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是.
题型四.一般空间几何体的表面积与体积1.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122π B.12π C.82π D.10π2.母线长为5的圆锥的侧面展开图的圆心角等于8π5A.16π B.8π C.16π3 D.3.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为.4.已知边长为3的正三角形ABC三个顶点都在球O的表面上,且球心O到平面ABC的距离为该球半径的一半,则球O的表面积为.5.如图,直三棱柱ABC﹣A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A.2 B.1 C.2 D.26.在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm,母线长最短50cm,最长80cm,则斜截圆柱的侧面面积S=cm2.7.已知正四棱台的侧棱长为3cm,两底面边长分别为2cm和4cm,则该四棱台的体积为.
题型五.三棱锥的表面积与体积1.(2019·全国3)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD﹣A1B1C1D1挖去四棱锥O﹣EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.2.如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=1,则四面体A﹣EFB的体积为()A.26 B.212 C.243.如图,在正三棱锥A﹣BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A﹣BCD的体积是.4.如图所示,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为.5.如图,在多面体ABCDEF中,已知面ABCD是边长为4的正方形,EF∥AB,EF=2,EF上任意一点到平面ABCD的距离均为3,求该多面体的体积.题型六.空间几何体的最值问题1.已知圆锥底面半径为1,母线长为3,某质点从圆锥底面圆周上一点A出发,绕圆锥侧面一周,再次回到A点,则该质点经过的最短路程为.2.如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,则P到各顶点的距离的不同取值有个.3.已知正方体ABCD﹣A1B1C1D1的棱长为2,线段EF,GH分别在AB,CC1上移动,且EF+GH=12,则三棱锥E﹣FGH的体积最大值为4.已知一个三棱锥的六条棱的长分别为1,1,1,1,2,a,且长为a的棱与长为A.212 B.312 C.265.如图所示,在棱长均为2的正三棱柱ABC﹣A1B1C1中,点D为棱AC的中点,点P是侧棱AA1上的动点,求△PBD面积的最大值.6.在棱长为6的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是正方体的表面DCC1D1(包括边界)上的动点,且满足∠APD=∠MPC,则三棱锥P﹣BCD体积的最大值是()A.123 B.36 C.24 D.7.若一个圆锥的母线长为4,高为2,则过这个圆锥的任意两条母线的截面面积的最大值是.8.唐朝著名的凤鸟花卉纹浮雕银杯如图1所示,它的盛酒部分可以近似地看作是半球与圆柱的组合体(如图2).当这种酒杯内壁表面积(假设内壁表面光滑,表面积为S平方厘米,半球的半径为R厘米)固定时,若要使得酒杯的容积不大于半球体积的2倍,则R的取值范围为()A.(0,3510π] B.[3S10π,+∞)课后作业.空间几何体1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:12.已知底面半径为1,体积为3π的圆柱,内接于一个高为23圆锥(如图),线段AB为圆锥底面的一条直径,则从点A绕圆锥的侧面到点BA.8 B.43 C.42 D.43.已知一个圆台的下底面半径为r,高为h,当圆台的上底半径r′变化时,圆台体积的变化范围是.4.如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为()A.13 B.14 C.125.《九章算术》中,将如图所示的几何体称为刍薨,底面ABCD为矩形,且EF∥底面ABCD,EF到平面ABCD的距离为h,BC=a,AB=b,则EF=c时,则VB−CDEFVE−ABDA.12 B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术设备融资租赁合同书
- 工业园基础设施建设投资开发合同
- 导游合同范文
- 机电科工作职责(2篇)
- 新煤矿瓦斯治理体系达标方案汇报材料范例(2篇)
- 公司劳动保障规章制度(2篇)
- 公司业务员岗位职责范文(2篇)
- 物业消防管理制度(2篇)
- 施工电梯安全使用规程模版(3篇)
- 【正版授权】 ISO 6489-5:2019/Amd 1:2025 EN Agricultural vehicles - Mechanical connections between towed and towing vehicles - Part 5: Specifications for non-swivel clevis couplings - Ame
- 2024年医院副院长工作总结范文(2篇)
- UL1017标准中文版-2018吸尘器UL中文版标准
- 【MOOC】诊断学-山东大学 中国大学慕课MOOC答案
- 人体寄生虫表格总结超全(原虫部分)
- 病历质控流程
- 合作投资酒店意向合同范例
- 2024年度新能源汽车充电物流合同
- 2024年学校意识形态工作总结模版(3篇)
- 机械设备招投标授权委托书模板
- 科研年终总结汇报
- 汽车维修安全应急预案范文(5篇)
评论
0/150
提交评论