版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市金星中学八上数学期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若关于的分式方程无解,则的值为()A.或 B. C.或 D.2.如图,已知为等腰三角形,,将沿翻折至为的中点,为的中点,线段交于点,若,则()A. B. C. D.3.下列计算正确的是()A.x2•x3=x6 B.(xy)2=xy2 C.(x2)4=x8 D.x2+x3=x54.如图,在中,,是的平分线,若,,则为()A. B. C. D.5.若一个等腰三角形的两边长分别是2和5,则该等腰三角形的周长是()A.9 B.12 C.13 D.12或96.实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.7.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cm D.6cm,2cm,3cm8.关于x的方程无解,则k的值为()A.±3 B.3 C.﹣3 D.29.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点,分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点,若点P的坐标为(m,n),则下列结论正确的是()A.m=2n B.2m=n C.m=n D.m=-n10.下列图形:线段、角、三角形、四边形,等边三角形、等腰三角形、正五边形、正六边形中,是轴对称图形的有()个A.5 B.6 C.7 D.811.下列函数中,y随x的增大而减小的函数是()A. B. C. D.12.一个正数的平方根为2x+1和x﹣7,则这个正数为()A.5 B.10 C.25 D.±25二、填空题(每题4分,共24分)13.已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF//BC交AB于点E,交AC于点F.求证:BE+CF=EF.14.分解因式:x2-9=_▲.15.用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.16.填空:(1)已知,△ABC中,∠C+∠A=4∠B,∠C﹣∠A=40°,则∠A=度;∠B=度;∠C=度;(2)一个多边形的内角和与外角和之和为2160°,则这个多边形是边形;(3)在如图的平面直角坐标系中,点A(﹣2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小.则点P的坐标是.17.中,,,交于,交于,点是的中点.以点为原点,所在的直线为轴构造平面直角坐标系,则点的横坐标为________.18.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.三、解答题(共78分)19.(8分)如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,请证明∠3=∠420.(8分)(1)计算:(2)解方程组:21.(8分)2018年10月23日,港珠澳大桥正式开通.港珠澳大桥东起香港口岸人工岛,向西止于珠海洪湾,总长约55千米,是粤港澳三地首次合作共建的超大型跨海交通工程.10月24日正式通车当天,甲乙两辆巴士同时从香港国际机场附近的香港口岸人工岛出发,已知甲乙两巴士的速度比是,乙巴士比甲巴士早11分钟到达洪湾,求两车的平均速度各是多少千米/时?22.(10分)先化简,然后从中选出一个合适的整数作为的值代入求值.23.(10分)某条道路限速如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪处的正前方的处,过了后,小汽车到达B处,此时测得小汽车与车速测检测仪间的距离为,这辆小汽车超速了吗?24.(10分)为了了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖答卷活动(每名居民必须答卷且只答一份),并用得到的数据绘制了如图所示的条形统计图(得分为整数,满分为分,最低分为分)请根据图中信息,解答下列问题:(1)本次调查,一共抽取了多少名居民?(2)求本次调查获取的样本数据的平均数和众数;(3)社区决定对该小区名居民开展这项有奖答卷活动,得分者获一等奖,请你根据调查结果,帮社区工作人员估计需要准备多少份一等奖奖品?25.(12分)解分式方程:=-.26.如图,点O是△ABC边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(Ⅰ)求证:OE=OF;(Ⅱ)若CE=8,CF=6,求OC的长;
参考答案一、选择题(每题4分,共48分)1、A【分析】去分母得出方程(a+2)x=3,分两种情况:(1)当方程无解时得a+2=0,进而求a的值;(2)当方程的根是增根时得出x=1或x=0,再分别代入(a+2)x=3,进而求得a的值.【详解】解:将原方程去分母整理得,(a+2)x=3当a+2=0时,该整式方程无解,此时a=﹣2当a+2≠0时,要使分式方程无解,则方程的根为增根,即x=0或x=1把x=0代入(a+2)x=3,此时无解;把x=1代入(a+2)x=3,解得a=1综上所述,a的值为1或﹣2故选:A【点睛】本题主要考查分式方程无解的两个条件:(1)化成整式方程无解,所以原方程无解;(2)求出x的值是分式方程化成整式方程的解,但这个解是最简公分母的值为0,即为增根.掌握这两种情况是解题的关键.2、D【分析】连接,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接,设,则,∵为的中点,,∴故选:D.【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.3、C【分析】根据同底数幂的乘法法则、积的乘方、幂的乘方、合并同类项.【详解】解:A.x2•x3=x5,故原题计算错误;B.(xy)2=x2y2,故原题计算错误;C.(x2)4=x8,故原题计算正确;D.x2和x3不是同类项,故原题计算错误.故选C.【点睛】本题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.4、A【分析】作DE⊥AB,根据角平分线的性质得到DE=CD,再根据勾股定理及三角形的面积公式即可求解.【详解】如图,作DE⊥AB,∵是的平分线,∴DE=CD∵在中,,,,∴AB=∵,∴=AB:AC=10:6=故选A.【点睛】此题主要考查角平分线的性质,解题的关键是熟知角平分线的性质及面积的公式.5、B【分析】根据等腰三角形的定义,即可得到答案.【详解】∵一个等腰三角形的两边长分别是2和5,∴等腰三角形的三边长分别为:5,5,2,即:该等腰三角形的周长是1.故选B.【点睛】本题主要考查等腰三角形的定义以及三角形三边之间的关系,掌握等腰三角形的定义,是解题的关键.6、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,∴=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.7、A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A、2+3>4,能围成三角形;
B、1+2<4,所以不能围成三角形;
C、1+2=3,不能围成三角形;
D、2+3<6,所以不能围成三角形;
故选:A.【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8、B【详解】解:去分母得:由分式方程无解,得到即把代入整式方程得:故选B.9、D【分析】根据角平分线的性质及第二象限内点的坐标特点即可得出结论.【详解】解:∵由题意可知,点C在∠AOB的平分线上,∴m=-n.故选:D.【点睛】本题考查的是作图−基本作图,熟知角平分线的作法及其性质是解答此题的关键.10、B【分析】根据轴对称图形的定义判断即可.【详解】∵轴对称图形是:线段、角、等边三角形、等腰三角形、正五边形、正六边形共6个;故答案为:B.【点睛】本题考查了轴对称图形的定义,熟练掌握其定义是解题的关键.11、D【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵k=2>0,∴y随x的增大而增大,故本选项错误;B、∵k=5>0,∴y随x的增大而增大,故本选项错误;C、∵k=1>0,∴y随x的增大而增大,故本选项错误;D、∵k=-3<0,∴y随x的增大而减小,故本选项正确;故选D.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小是解答此题的关键.12、C【解析】一个正数的平方根为2x+1和x−7,∴2x+1+x−7=0x=2,2x+1=5(2x+1)2=52=25,故选C.二、填空题(每题4分,共24分)13、证明见解析【详解】试题分析:根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.试题解析:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EBD=∠EDB,∴BE=ED,同理CF=DF,∴BE+CF=ED+DF=EF.考点:①等腰三角形的判定与性质;②平行线的性质.14、(x+3)(x-3)【详解】x2-9=(x+3)(x-3),故答案为(x+3)(x-3).15、23-1【解析】分析:根据不等式的性质3,举出例子即可.详解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足,即可,例如:,3,.故答案为,3,.点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.16、(1)52,36,92;(2)12;(3)(2,0)【分析】(1)通过三角形内角和性质与已知条件联立方程可得;(2)多边形的内角和公式可得;(3)线段和差最值问题,通过“两点之间,线段最短”.【详解】解:(1)由题意得,,解得,故答案为:52,36,92;(2)设这个多边形为n边形,由题意得,,解得,n=12,故答案为:12;(3)点B(4,2)关于x轴的对称点B′(4,﹣2),设直线AB′的关系式为,把A(﹣2,4),B′(4,﹣2)代入得,,解得,k=﹣1,b=2,∴直线AB′的关系式为y=﹣x+2,当y=0时,﹣x+2=0,解得,x=2,所以点P(2,0),故答案为:(2,0).【点睛】掌握三角形内角和,多边形内角和、外角和性质及线段的最值为本题的关键.17、【分析】连接DE,过E作EH⊥OD于H,求得∠EDO=45°,即可得到Rt△DEH中,求得DH,进而得出OH,即可求解.【详解】如图所示,连接,过作于,于,于,是的中点,,,,,,,,中,,,点的横坐标是.【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.18、八【解析】360°÷(180°-135°)=8三、解答题(共78分)19、详见解析【分析】由∠1=∠2,得AC=AD,进而由HL判定Rt△ABC≌Rt△AED,即可得出结论【详解】∵∠1=∠2∴AC=AD∵∠B=∠E=Rt∠,AB=AE∴△ABC≌△AED(HL)∴∠3=∠4考点:全等三角形的判定及性质20、(1);(2)【分析】(1)根据二次根式混合运算法则即可求解(2)将两个方程相加即可消去y,求得x的值,再代入任一方程求解y的值.【详解】(1)==故答案为:(2)解方程组:由①+②得,3x=9③得x=3把x=3代入①得,y=-1∴原方程组的解是故答案为:【点睛】本题考查了二次根式的混合运算和二元一次方程组的解法,本题主要应用加减消元法解二元一次方程组.21、甲巴士速度是60千米/时,乙巴士速度是75千米/时.【分析】设设甲巴士速度是千米/时,乙巴士速度是千米/时,则甲巴士所需时间为,乙巴士所需时间为,再根据乙巴士比甲巴士早11分钟到达洪湾即可列出分式方程,再解之即可.【详解】解:设甲巴士速度是千米/时,乙巴士速度是千米/时.依题意得解得:经检验:是原分式方程的解答:甲巴士速度是60千米/时,乙巴士速度是75千米/时.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.22、-1【解析】先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.23、小汽车超速了.【分析】根据勾股定理求出小汽车在内行驶的距离,再求出其速度,与比较即可.【详解】解:在中,米,,所以小汽车超速了.【点睛】本题结合速度问题考查了勾股定理的应用,理解题意,合理运用定理是解答关键.24、(1)50;(2)8.26分,8分;(3)100【分析】(1)根据总数=个体数量之和计算即可;(2)根据样本的平均数和众数的定义计算即可;(3)利用样本估计总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现大全【员工管理】十篇
- 《物业管理服务业》课件
- 三年级数学数学广角课件
- 2024年农业综合开发和扶贫开发工作总结
- 2024年公司劳动社保科上半年的工作总结
- 空调机运输协议三篇
- 农业产品销售主管工作总结
- 通信科技前台工作总结
- 家政服务前台工作总结
- 机电装备话务员工作总结
- 年产30万吨高钛渣生产线技改扩建项目环评报告公示
- 07221美术设计与创意
- 2023年拓展加盟经理年终总结及下一年计划
- 网络安全技术及应用 第5版 习题及答案 贾铁军 习题集 第1章
- 有限空间作业审批表
- 认罪认罚悔罪书(4篇)
- 烟花采购协议书
- 高考作文模拟写作:“善言”与“敢言”+导写及范文
- 《建筑施工承插型盘扣式钢管支架安全技术规程》 JGJ231-2010
- 视频监控维护合同
- 国开大学2023年01月22588《管理线性规划入门》期末考试参考答案
评论
0/150
提交评论