版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年黑龙江省齐齐哈尔市讷河市市级名校中考数学最后冲刺浓缩精华卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,已知,,则的度数为()A. B. C. D.2.关于的叙述正确的是()A.= B.在数轴上不存在表示的点C.=± D.与最接近的整数是33.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.4.把a•的根号外的a移到根号内得()A. B.﹣ C.﹣ D.5.定义:若点P(a,b)在函数y=1x的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=1x的一个“派生函数”.例如:点(2,12)在函数y=1x的图象上,则函数y=2x2+(1)存在函数y=1x(2)函数y=1xA.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题6.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①;②当0<x<3时,;③如图,当x=3时,EF=;④当x>0时,随x的增大而增大,随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.47.下列关于x的方程中一定没有实数根的是()A. B. C. D.8.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm29.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.10.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. B. C.2 D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.12.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.13.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.14.已知是方程组的解,则3a﹣b的算术平方根是_____.15.分式方程-1=的解是x=________.16.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;(II)如图②,当α=60°时,求点C′的坐标;(III)当点B,D′,C′共线时,求点C′的坐标(直接写出结果即可).18.(8分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.19.(8分)计算:+()-2-8sin60°20.(8分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A. B. C. D.21.(8分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.22.(10分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)23.(12分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.24.如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(-1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1备用图
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.2、D【解题分析】
根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【题目详解】选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;选项D,与最接近的整数是=1.故选D.【题目点拨】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.3、A【解题分析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.4、C【解题分析】
根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)•,然后利用二次根式的性质得到,再把根号内化简即可.【题目详解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)•,=,=﹣.故选C.【题目点拨】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.5、C【解题分析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型6、C【解题分析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;当x=3时,,,即EF==,选项③正确;当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.考点:反比例函数与一次函数的交点问题.7、B【解题分析】
根据根的判别式的概念,求出△的正负即可解题.【题目详解】解:A.x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,B.,△=36-144=-1080,∴原方程没有实数根,C.,,△=10,∴原方程有两个不相等的实数根,D.,△=m2+80,∴原方程有两个不相等的实数根,故选B.【题目点拨】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.8、B【解题分析】试题分析:底面积是:9πcm1,底面周长是6πcm,则侧面积是:×6π×5=15πcm1.则这个圆锥的全面积为:9π+15π=14πcm1.故选B.考点:圆锥的计算.9、B【解题分析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.10、D【解题分析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【题目详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为BC•AD==,S扇形BAC==,∴莱洛三角形的面积S=3×﹣2×=2π﹣2,故选D.【题目点拨】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】
设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.【题目详解】解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案为.【题目点拨】本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.12、【解题分析】
利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;【题目详解】∵AE=EC,BD=CD,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴=,故答案是:.【题目点拨】考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.13、【解题分析】
先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.【题目详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为,故答案为.【题目点拨】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.14、2.【解题分析】
灵活运用方程的性质求解即可。【题目详解】解:由是方程组的解,可得满足方程组,由①+②的,3x-y=8,即可3a-b=8,故3a﹣b的算术平方根是,故答案:【题目点拨】本题主要考查二元一次方程组的性质及其解法。15、-5【解题分析】两边同时乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案为:-5.【题目点拨】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.16、(x﹣1)(x﹣2)【解题分析】
根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.【题目详解】解:已知方程的两根为:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).【题目点拨】一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)三、解答题(共8题,共72分)17、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解题分析】
(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【题目详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,∴OF=FC′,设OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【题目点拨】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.18、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).【解题分析】
(1)根据待定系数法,可得函数解析式;
(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【题目详解】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y=;(2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案为﹣;②AB的解析式为当PA⊥AB时,PA的解析式为y=﹣2x﹣2,联立PA与抛物线,得,解得(舍),,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得,解得(舍),即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,当t=0时,S取最大值,即M(0,1).由勾股定理,得AB==,设M到AB的距离为h,由三角形的面积,得h==.点M到直线AB的距离的最大值是.【题目点拨】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键19、4-2【解题分析】试题分析:原式第一项利用二次根式的化简公式进行化简,第二项利用负指数公式化简,第三项利用特殊角的三角函数值化简,合并即可得到结果试题解析:原式=2+4-8×=2+4-4=4-220、A【解题分析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.21、这种测量方法可行,旗杆的高为21.1米.【解题分析】分析:根据已知得出过F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x.过F作FG⊥AB于G,交CE于H(如图).所以△AGF∽△EHF.因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.22、29.8米.【解题分析】
作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.【题目详解】解:如图,作,,由题意得:米,米,则米,答:这架无人飞机的飞行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育场馆外来观众管理办法
- 城市绿化苗木供应保障书
- 旅游景区设施招投标规程
- 福州市停车场紧急医疗救助
- 电子产品招投标技巧题
- 商标授权协议书范本
- 博物馆租赁合同:文物展览
- 冰球馆木地板安装协议
- 建筑拆除安全合同范本
- 环保工程招投标法定时间表
- 期中试卷(试题)-2024-2025学年三年级上册数学青岛版
- 车队车辆挂靠合同模板
- 期中押题卷(试题)-2024-2025学年数学六年级上册北师大版
- 期中模拟(1-3单元)(试题)-2024-2025学年六年级上册数学苏教版
- 统编版2024年新版道德与法治七年级上册第二单元《成长的时空》单元整体教学设计
- 期中 (试题) -2024-2025学年人教PEP版英语四年级上册
- 点亮文明 课件 2024-2025学年苏少版(2024)初中美术七年级上册
- 廉政法规知识测试及答案
- 跨境电商行业研究框架专题报告
- 托育服务中心项目可行性研究报告
- 2024内蒙古农牧业融资担保限公司招聘28人高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论