宣威市来宾一中学2024届中考数学模拟试题含解析_第1页
宣威市来宾一中学2024届中考数学模拟试题含解析_第2页
宣威市来宾一中学2024届中考数学模拟试题含解析_第3页
宣威市来宾一中学2024届中考数学模拟试题含解析_第4页
宣威市来宾一中学2024届中考数学模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宣威市来宾一中学2024届中考数学模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知A(,),B(2,)两点在双曲线上,且,则m的取值范围是()A. B. C. D.2.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为()A. B.或C. D.或3.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种 B.2种 C.3种 D.4种4.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小5.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG于点E,CF⊥AG于点F,则AE-GF的值为()A.1 B.2 C.32 D.6.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A. B. C. D.7.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.8.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()A.180人B.117人C.215人D.257人9.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.14二、填空题(共7小题,每小题3分,满分21分)11.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.12.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______13.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是_____.14.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.15.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.16.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.17.若关于x的分式方程有增根,则m的值为_____.三、解答题(共7小题,满分69分)18.(10分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.(1)若A、B移动到如图所示位置,计算的值.(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.(3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.19.(5分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.(1)求证:DC=DE;(2)若AE=1,,求⊙O的半径.20.(8分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点.求抛物线的表达式;若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标.21.(10分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为(填“真”或“假”)命题,并说明理由;(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.22.(10分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.23.(12分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.24.(14分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处.(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点C、E、F、G为顶点的四边形是矩形,求点F的坐标.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】

∵A(,),B(2,)两点在双曲线上,∴根据点在曲线上,点的坐标满足方程的关系,得.∵,∴,解得.故选D.【题目详解】请在此输入详解!2、B【解题分析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.3、B【解题分析】

首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.【题目详解】解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.4、B【解题分析】

根据倒数的定义解答即可.【题目详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【题目点拨】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.5、D【解题分析】

设AE=x,则AB=2x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出结果.【题目详解】设AE=x,

∵四边形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故选D.【题目点拨】本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.6、B【解题分析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD=;故选B.【题目点拨】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.7、D【解题分析】

根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【题目详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【题目点拨】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.8、B【解题分析】

设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【题目详解】设男生为x人,则女生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【题目点拨】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.9、C【解题分析】

由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【题目详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【题目点拨】考查平行线的判定,掌握平行线的判定定理是解题的关键.10、B【解题分析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.二、填空题(共7小题,每小题3分,满分21分)11、3或【解题分析】

以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.【题目详解】如图作CM⊥AB当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,设EF交AD于点O∵AO=OD,OE∥BD∴AE=EB=3当∠FED=∠DEB时则∠FED=∠FEA=∠DEB=60°此时△FED~△DEB,设AE=ED=x,作DN⊥AB于N,则EN=,DN=,∵DN∥CM,∴∴∴x∴BE=6-x=故答案为3或【题目点拨】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.12、【解题分析】

由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【题目详解】由图象可知:抛物线开口方向向下,则,对称轴直线位于y轴右侧,则a、b异号,即,抛物线与y轴交于正半轴,则,,故正确;对称轴为,,故正确;由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,所以当时,,即,故正确;抛物线与x轴有两个不同的交点,则,所以,故错误;当时,,故正确.故答案为.【题目点拨】本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.13、【解题分析】

由△ABC中,点D、E分别在边AB、BC上,DE∥AC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【题目详解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案为.【题目点拨】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.14、【解题分析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=.考点:概率的计算.15、【解题分析】

利用P(A)=,进行计算概率.【题目详解】从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.故答案是:.【题目点拨】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.16、【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为,故答案为:.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、±【解题分析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【题目详解】方程两边都乘x-3,得x-2(x-3)=m2,∵原方程增根为x=3,∴把x=3代入整式方程,得m=±.【题目点拨】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题(共7小题,满分69分)18、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.【解题分析】

(1)根据数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2,即可求解.(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【题目详解】(1)由图可知:a=10,b=2,∴a+b=2故a+b的值为2.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2∴b|a|=b+a=23=3故a的值为3,b|a|的值为3.(1)∵点A不动,点B向右移动15.1个单位长∴a=10,b=17.1∴ba=17.1(10)=27.1故b比a大27.1.【题目点拨】本题主要考查了数轴,关键在于数形结合思想.19、(1)见解析;(2).【解题分析】

(1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;(2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.【题目详解】(1)证明:连接OD,由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半径为.【题目点拨】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.20、为;点Q的坐标为或.【解题分析】

依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.【题目详解】抛物线顶点A的横坐标是,,即,解得..将代入得:,抛物线的解析式为.抛物线向下平移了4个单位.平移后抛物线的解析式为,.,点O在PQ的垂直平分线上.又轴,点Q与点P关于x轴对称.点Q的纵坐标为.将代入得:,解得:或.点Q的坐标为或.【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.21、(1)真;(2);(3)或或.【解题分析】

(1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而∠MPB=∠MBP,然后根据三角形外角的性质说明即可;(2)先证明△PAC∽△PMB,然后根据相似三角形的性质求解即可;(3)分三种情况求解:P为线段AB上的“好点”,P为线段AB延长线上的“好点”,P为线段BA延长线上的“好点”.【题目详解】(1)真.理由如下:如图,当∠ABC=90°时,M为PC中点,BM=PM,则∠MPB=∠MBP>∠ACP,所以在线段AB上不存在“好点”;(2)∵P为BA延长线上一个“好点”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M为PC中点,∴MP=2;∴;∴.(3)第一种情况,P为线段AB上的“好点”,则∠ACP=∠MBA,找AP中点D,连结MD;∵M为CP中点;∴MD为△CPA中位线;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB边上,舍去;)∴AP=2第二种情况(1),P为线段AB延长线上的“好点”,则∠ACP=∠MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;∵M为CP中点;∴MD为△CPA中位线;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM∴DM2=DP·DB即4=DP·(5DA)=DP·(5DP);解得DP=1(不在AB延长线上,舍去),DP=4∴AP=8;第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD;此时,∠MBA>∠MDB>∠DMP=∠ACP,则这种情况不存在,舍去;第三种情况,P为线段BA延长线上的“好点”,则∠ACP=∠MBA,∴△PAC∽△PMB;∴∴BM垂直平分PC则BC=BP=;∴∴综上所述,或或;【题目点拨】本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.22、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解题分析】

(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【题目详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为(分),众数为75分,中位数为第13个数据,即75分.【题目点拨】理解两幅统计图中各数据的含义及其对应关系是解题关键.23、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解题分析】

(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【题目详解】(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论