




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省长春市南关区数学八上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列各组数可能是一个三角形的边长的是()A.5,7,12 B.5,6,7 C.5,5,12 D.1,2,62.无论x取什么数,总有意义的分式是A. B. C. D.3.下列图形:线段、角、三角形、四边形,等边三角形、等腰三角形、正五边形、正六边形中,是轴对称图形的有()个A.5 B.6 C.7 D.84.下列计算正确的是()A.a6÷a2=a3 B.(a3)2=a5C.25=±5 D.5.全球芯片制造已经进入纳米到纳米器件的量产时代.中国自主研发的第一台纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为手机搭载了全球首款纳米制程芯片,纳米就是米.数据用科学记数法表示为()A. B. C. D.6.若分式的值为负数,则x的取值范围是()A.x>3 B.x<3 C.x<3且x≠0 D.x>-3且x≠07.立方根等于它本身的有()A.0,1 B.-1,0,1 C.0, D.18.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(﹣2,2)黑棋(乙)的坐标为(﹣1,﹣2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,﹣1) D.(2,1)9.如图,∠ACD是△ABC的一个外角,过点D作直线,分别交AC和AB于点E,H.则下列结论中错误的是()A.∠HEC>∠BB.∠B+∠ACB=180°-∠AC.∠B+∠ACB<180°D.∠B>∠ACD10.如图,,.,,垂足分别是点,,则的长是()A.7 B.3 C.5 D.211.下列根式合并过程正确的是()A. B. C. D.12.若a3,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5二、填空题(每题4分,共24分)13.某住宅小区有一块草坪如图四边形,已知米,米,米,米,且,则这块草坪的面积为________平方米.14.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=______.15.计算的结果等于_______.16.若m2+m-1=0,则2m2+2m+2017=________________.17.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.(1)的度数是_____________;(2)当为直角三角形时,点E的坐标是________________.18.在平面直角坐标系中,已知两点的坐标分别为,若点为轴上一点,且最小,则点的坐标为__________.三、解答题(共78分)19.(8分)已知一次函数的图象经过点(2,1)和(0,﹣2).(1)求出该函数图象与x轴的交点坐标;(2)判断点(﹣4,6)是否在该函数图象上.20.(8分)如图,已知直线,直线,与相交于点,,分别与轴相交于点.(1)求点P的坐标.(2)若,求x的取值范围.(3)点为x轴上的一个动点,过作x轴的垂线分别交和于点,当EF=3时,求m的值.21.(8分)如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.22.(10分)如图,平分,,于,于.(1)若,求的度数;(2)若,,.求四边形的面积.23.(10分)解不等式(组),并将解集表示在数轴上:(1)解不等式:(2)解不等式组:24.(10分)如图,在正方形网格中,的三个顶点都在格点上,.结合所给的平面直角坐标系解答下列问题:(1)直接写出的面积:(2)请在图中作出与关于轴对称的;(3)在(2)的条件下,若,是内部任意一点,请直接写点在内部的对应点的坐标.25.(12分)如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)求证:∠ABE=∠ACD;(2)求证:过点A、F的直线垂直平分线段BC.26.阅读下列一段文字:在直角坐标系中,已知两点的坐标是M(x1,y1),N(x2,y2)),M,N两点之间的距离可以用公式MN=计算.解答下列问题:(1)若点P(2,4),Q(﹣3,﹣8),求P,Q两点间的距离;(2)若点A(1,2),B(4,﹣2),点O是坐标原点,判断△AOB是什么三角形,并说明理由.
参考答案一、选择题(每题4分,共48分)1、B【解析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A、5+7=12,不能构成三角形;B、5+6>7,能构成三角形;C、5+5<12,不能构成三角形;D、1+2<6,不能构成三角形.故选:B.【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.2、C【分析】按照分式有意义,分母不为零即可求解.【详解】A.,x3+1≠1,x≠﹣1;B.,(x+1)2≠1,x≠﹣1;C.,x2+1≠1,x为任意实数;D.,x2≠1,x≠1.故选C.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.3、B【分析】根据轴对称图形的定义判断即可.【详解】∵轴对称图形是:线段、角、等边三角形、等腰三角形、正五边形、正六边形共6个;故答案为:B.【点睛】本题考查了轴对称图形的定义,熟练掌握其定义是解题的关键.4、D【详解】解:A、a6÷a2=a6-2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、25=5,表示25的算术平方根式5,25≠±5,故本选项错误;D、3-8故选D.【点睛】本题考查立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法.5、B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、C【解析】由于分式的分母不为0,那么此分式的分母恒为正数,若分式值为负数,则分子必为负数,可根据上述两点列出不等式组,进而可求出x的取值范围.【详解】根据题意得解得x<3且x≠0.故选:C.【点睛】考查分式的值,根据两式相除,同号得正,异号得负即可列出不等式,求解即可.7、B【分析】根据立方根性质可知,立方根等于它本身的实数2、1或-1.【详解】解:∵立方根等于它本身的实数2、1或-1.
故选B.【点睛】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,2的立方根是2.8、D【分析】先利用已知两点的坐标画出直角坐标系,然后可写出白棋(甲)的坐标.【详解】根据题意可建立如图所示平面直角坐标系:由坐标系知白棋(甲)的坐标是(2,1),故选D.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9、D【分析】三角形的一个外角大于任何一个和它不相邻的一个内角,根据以上定理逐个判断即可.【详解】解:A、∵∠HEC>∠AHD,∠AHD>∠B,
∴∠HEC>∠B,故本选项不符合题意;B、∵∠B+∠ACB+∠A=180°,
∴∠B+∠ACB=180°-∠A,故本选项不符合题意;
C、∵∠B+∠ACB+∠A=180°,
∴∠B+∠ACB<180°,故本选项不符合题意;D、∠B<∠ACD,故本选项符合题意;
故选:D.【点睛】本题考查了三角形内角和定理和三角形的外角性质的应用,能灵活运用定理进行推理是解题的关键.10、B【分析】根据条件可以得出,进而得出,就可以得出,就可以求出的值.【详解】解:,,,.,.在和中,,,,..故选:.【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形.11、D【分析】根据二次根式的加减法对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A、不能合并,所以A选项错误;
B、不能合并,所以B选项错误;
C、原式=,所以C选项错误;
D、原式=,所以D选项正确.
故选:D.【点睛】此题考查二次根式的混合运算,解题关键在于先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.12、B【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【详解】∵25<10<16,∴5<<6,∴5−1<−1<6−1,即2<−1<1,∴a的值所在的范围是2<a<1.故选:B.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题(每题4分,共24分)13、2【分析】连接AC,先根据勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ACD为直角三角形.从而用求和的方法求面积.【详解】连接AC,∵米,米,且∴∴米,∵米,米,∴AC1+DC1=AD1,∴∠ACD=90°.这块草坪的面积=SRt△ABC+SRt△ACD=AB•BC+AC•DC=(3×4+5×11)=2米1.故答案为:2.【点睛】此题主要考查了勾股定理的运用及直角三角形的判定等知识点.14、35°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】∵△ABD中,AB=AD,∠B=70°,
∴∠B=∠ADB=70°,
∴∠ADC=180°﹣∠ADB=110°,
∵AD=CD,
∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.15、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算16、1【分析】由题意易得,然后代入求解即可.【详解】解:∵m2+m-1=0,∴,∴;故答案为1.【点睛】本题主要考查整式的化简求值,关键是利用整体代入法进行求解.17、30°(1,)或(2,)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【详解】解:(1)∵∠ACB=90°,点A的坐标为,∴AC=,BC=3,∴tan∠ABC==,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,
∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,
∴∠OED=45°.
∵∠ACB=90°,点A的坐标为,∴tan∠ABC=,∠ABC=30°.
∵ED⊥x轴,
∴∠OED=90°-∠ABC=60°.
45°≠60°,此种情况不可能出现;②当∠AFE=90°时,
∵∠OED=∠FED=60°,
∴∠AEF=60°,
∵∠AFE=90°,
∴∠EAF=90°-∠AEF=30°.
∵∠BAC=90°-∠ABC=60°,
∴∠FAC=∠BAC-∠EAF=60°-30°=30°.
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan∠ABC×OD=,∴点E的坐标为(1,);③当∠EAF=90°时,
∵∠BAC=60°,
∴∠CAF=∠EAF-∠EAC=90°-60°=30°,
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan∠ABC×OD=,∴点E的坐标为(2,);综上知:若△AEF为直角三角形.点E的坐标为(1,)或(2,).故答案为:(1,)或(2,).【点睛】本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.18、【解析】可过点A作关于x轴的对称点A′,连接A′B与轴的交点即为所求.【详解】如图,作点A作关于x轴的对称点A′,连接A′B与x轴的交于点M,点M即为所求.∵点B的坐标(3,2)点A′的坐标(-1,-1),∴直线BA′的解析式为y=x-,令y=0,得到x=,∴点M(,0),故答案为:(,0).【点睛】此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.三、解答题(共78分)19、(1)(,0);(2)点(﹣4,6)不在该函数图象上【分析】(1)设一次函数解析式为y=kx+b,把已知两点坐标代入求出k与b的值,即可确定出解析式,然后令y=0,即可求得与x轴的交点坐标;(2)将x=﹣4代入解析式计算y的值,与6比较即可.【详解】解:(1)设该函数解析式为y=kx+b,把点(2,1)和(0,﹣2)代入解析式得2k+b=1,b=﹣2,解得k=,b=﹣2,∴该函数解析式为y=x﹣2,令y=0,则x﹣2=0,解得x=,∴该函数图象与x轴的交点为(,0);(2)当x=﹣4时,y=×(﹣4)﹣2=﹣8≠6,∴点(﹣4,6)不在该函数图象上.【点睛】此题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.20、(1)P(-2,1);(2)-3<x<-2;(3)m=-3或m=-1.【分析】(1)由点P是两直线的交点,则由两方程的函数值相等,解出x,即可得到点P坐标;(2)由,联立成不等式组,解不等式组即可得到x的取值范围;(3)由点D的横坐标为m,结合EF=3,可分为两种情况进行讨论:点D在点P的左边;点D在点P的右边,分别计算,即可得到m的值.【详解】解:(1)P点是直线l1与直线l2的交点,可得:2x3=x+3,解得:x=2,∴y=1;∴P点的坐标为:(2,1);(3),,解得:;;(3)∵点D为(m,0),根据题意可知,则E(m,2m3);F(m,m+3),第一种情况:点D在点P的左边时,此时点E在点F的上方;∴,;第二种情况:点D在点P的右边时,此时点E在点F的下方;∴,;∴m的值为:或.【点睛】本题考查了一次函数的图像和性质,以及一次函数与一元一次不等式的联系,解题的关键是熟练掌握一次函数的性质,第三问要注意利用分类讨论的思想进行解题.21、(1)18°;(2)点D的坐标(n+1,n);(1)OF的长不会变化,值为1.【分析】(1)根据同角的余角相等可得∠DCF=∠OAC,进而可得结果;(2)作DH⊥x轴于点H,如图1,则可根据AAS证明△AOC≌△CHD,于是可得OC=DH,AO=CH,进而可得结果;(1)方法一:由轴对称的性质可得AC=BC,于是可得AC=BC=DC,进一步即得∠BAC=∠ABC,∠CBD=∠CDB,而∠ACB+∠DCB=270°,则可根据三角形的内角和定理推出∠ABC+∠CBD=45°,进一步即得△OBF是等腰直角三角形,于是可得OB=OF,进而可得结论;方法2:如图2,连接AF交CD于点M,由轴对称的性质可得AC=BC,AF=BF,进一步即可根据等腰三角形的性质以及角的和差得出∠CAF=∠CBF,易得BC=DC,则有∠CBF=∠CDF,可得∠CAF=∠CDF,然后根据三角形的内角和定理可得∠AFD=∠ACD=90°,即得△AFB是等腰直角三角形,然后根据等腰直角三角形的性质可推出OF=OA,问题即得解决.【详解】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°.∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=18°,∴∠DCF=18°;(2)过点D作DH⊥x轴于点H,如图1,则∠AOC=∠CHD=90°,∵△ACD是等腰直角三角形,∠ACD=90°,∴AC=CD,又∵∠OAC=∠DCF,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=1,∴点D的坐标为(n+1,n);(1)不会变化.方法一:∵点A(0,1)与点B关于x轴对称,∴AO=BO=1,AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=1,即OF的长不会变化;方法2:如图2,连接AF交CD于点M,∵点A与点B关于x轴对称,∴AC=BC,AF=BF,∴∠OAC=∠OBC,∠OAF=∠OBF,∴∠OAF−∠OAC=∠OBF−∠OBC,即∠CAF=∠CBF,∵AC=CD,AC=BC,∴BC=CD,∴∠CBF=∠CDF,∴∠CAF=∠CDF,又∵∠AMC=∠DMF,∴∠AFD=∠ACD=90°,∴∠AFB=90°,∴∠AFO=∠OFB=45°,∴∠AFO=∠OAF=45°,∴OF=OA=1,即OF的长不会变化.【点睛】本题以直角坐标系为载体,主要考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、三角形的内角和定理、轴对称的性质和等腰三角形的性质等知识,涉及的知识点多,属于常考题型,熟练掌握上述基本知识是解题的关键.22、(1)∠CDA=120°;(2)9【分析】(1)根据角平分线的性质得到AE=AF,进而证明Rt△ABE≌Rt△ADF(HL),再根据全等三角形的性质即可得到∠CDA的度数;(2)先证明Rt△ACE与Rt△ACF(HL),得到CE=CF,再得到CE的长度,将四边形的面积分成△ACE与△ACD的面积计算即可.【详解】解:(1)∵平分,于,于∴AE=AF,∠AEB=∠AFD=90°,在Rt△ABE与Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL)∴∠ABE=∠ADF=60°,∴∠CDA=180°-∠ADF=120°,故∠CDA=120°.(2)由(1)可得Rt△ABE≌Rt△ADF∴BE=DF,又∵在Rt△ACE与Rt△ACF中∴Rt△ACE与Rt△ACF(HL)∴CE=CFCE=CF=CD+DF=CD+BE=5,又∵∴AF=AE=2∴四边形AECD的面积=故四边形的面积为9【点睛】本题考查了角平分线的性质定理、全等三角形的判定与性质,解题的关键是掌握角平分线的性质.23、(1),数轴见解析;(2),数轴见解析.【分析】(1)根据去括号,移项合并同类项,系数化为1解不等式,然后将解集表示在数轴上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郴州应急抢险管理办法
- 签证索赔管理办法心得
- 赣州户外烧烤管理办法
- 鄂州员工寝室管理办法
- 孕妇学校培训课件
- 格塞尔培训课件
- 学习项目小组培训课件
- 肝癌手术护理课件
- 肝癌中医课件
- 高新一小学数学试卷
- 医院中层干部培训课件
- ERP车间管理模块操作培训手册
- 企业消防安全培训课件
- 机械制造项目检测试验计划
- 2025-2030年中国产业园区物业管理行业开拓第二增长曲线战略制定与实施研究报告
- 2025年山东省济南市属事业单位招考高频重点提升(共500题)附带答案详解
- 西门塔尔牛饲养技术规程
- 文献语言学论集-札记
- 城市建设史与规划史知到智慧树章节测试课后答案2024年秋江汉大学
- 开曼群岛公司法2024版中文译本(含2024年修订主要内容)
- 项目6 6.2 植物生产的温度调控(2)(课件)-《植物生产与环境》(高教版第4版)
评论
0/150
提交评论