




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省宿迁高三数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某几何体的三视图如右图所示,则该几何体的体积为()A.3 B. C. D.2.将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为()A.6 B.8 C.10 D.123.若,,,点C在AB上,且,设,则的值为()A. B. C. D.4.函数在的图象大致为()A. B.C. D.5.在中,,,,则边上的高为()A. B.2 C. D.6.用一个平面去截正方体,则截面不可能是()A.正三角形 B.正方形 C.正五边形 D.正六边形7.已知,,分别是三个内角,,的对边,,则()A. B. C. D.8.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.9.设,则()A. B. C. D.10.已知平面平面,且是正方形,在正方形内部有一点,满足与平面所成的角相等,则点的轨迹长度为()A. B.16 C. D.11.已知角的终边经过点,则A. B.C. D.12.“且”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量,且,则______14.(5分)在长方体中,已知棱长,体对角线,两异面直线与所成的角为,则该长方体的表面积是____________.15.已知正数a,b满足a+b=1,则的最小值等于__________,此时a=____________.16.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.18.(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,,分组,用分层抽样的方法从名学生中抽取20人.①求每层应抽取的人数;②若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.19.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.20.(12分)已知函数,其中e为自然对数的底数.(1)讨论函数的单调性;(2)用表示中较大者,记函数.若函数在上恰有2个零点,求实数a的取值范围.21.(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.22.(10分)在中,设、、分别为角、、的对边,记的面积为,且.(1)求角的大小;(2)若,,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由三视图知:几何体是直三棱柱消去一个三棱锥,如图:
直三棱柱的体积为,消去的三棱锥的体积为,
∴几何体的体积,故选B.点睛:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及相关几何量的数据是解答此类问题的关键;几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积.2、D【解析】
推导出,且,,,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值.【详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,,且,由为等腰直角三角形可知,,设中点为,则平面,∴,∴,解得.故选:D【点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.3、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.4、B【解析】
先考虑奇偶性,再考虑特殊值,用排除法即可得到正确答案.【详解】是奇函数,排除C,D;,排除A.故选:B.【点睛】本题考查函数图象的判断,属于常考题.5、C【解析】
结合正弦定理、三角形的内角和定理、两角和的正弦公式,求得边长,由此求得边上的高.【详解】过作,交的延长线于.由于,所以为钝角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即边上的高为.故选:C【点睛】本小题主要考查正弦定理解三角形,考查三角形的内角和定理、两角和的正弦公式,属于中档题.6、C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.考点:平面的基本性质及推论.7、C【解析】
原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.8、B【解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.9、C【解析】试题分析:,.故C正确.考点:复合函数求值.10、C【解析】
根据与平面所成的角相等,判断出,建立平面直角坐标系,求得点的轨迹方程,由此求得点的轨迹长度.【详解】由于平面平面,且交线为,,所以平面,平面.所以和分别是直线与平面所成的角,所以,所以,即,所以.以为原点建立平面直角坐标系如下图所示,则,,设(点在第一象限内),由得,即,化简得,由于点在第一象限内,所以点的轨迹是以为圆心,半径为的圆在第一象限的部分.令代入原的方程,解得,故,由于,所以,所以点的轨迹长度为.故选:C【点睛】本小题主要考查线面角的概念和运用,考查动点轨迹方程的求法,考查空间想象能力和逻辑推理能力,考查数形结合的数学思想方法,属于难题.11、D【解析】因为角的终边经过点,所以,则,即.故选D.12、A【解析】
画出“,,,所表示的平面区域,即可进行判断.【详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、0.1【解析】
根据原则,可得,简单计算,可得结果.【详解】由题可知:随机变量,则期望为所以故答案为:【点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.14、10【解析】
作出长方体如图所示,由于,则就是异面直线与所成的角,且,在等腰直角三角形中,由,得,又,则,从而长方体的表面积为.15、3【解析】
根据题意,分析可得,由基本不等式的性质可得最小值,进而分析基本不等式成立的条件可得a的值,即可得答案.【详解】根据题意,正数a、b满足,则,当且仅当时,等号成立,故的最小值为3,此时.故答案为:3;.【点睛】本题考查基本不等式及其应用,考查转化与化归能力,属于基础题.16、【解析】
由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.∴,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等比数列,且首项为,公比为.故(2)由(1)知,所以所以【点睛】本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.18、(1),,,中位数;(2)①三层中抽取的人数分别为2,5,13;②【解析】
(1)根据频率分布直方表的性质,即可求得,得到,,再结合中位数的计算方法,即可求解.(2)①由题意知用分层抽样的方法从样本中抽取20人,根据抽样比,求得在三层中抽取的人数;②由①知,设内被抽取的学生分别为,内被抽取的学生分别为,利用列举法得到基本事件的总数,利用古典概型的概率计算公式,即可求解.【详解】(1)由题意,可得,所以,.设一周课外读书时间的中位数为小时,则,解得,即一周课外读书时间的中位数约为小时.(2)①由题意知用分层抽样的方法从样本中抽取20人,抽样比为,又因为,,的频数分别为20,50,130,所以从,,三层中抽取的人数分别为2,5,13.②由①知,在,两层中共抽取7人,设内被抽取的学生分别为,内被抽取的学生分别为,若从这7人中随机抽取2人,则所有情况为,,,,,,,,,,,,,,,,,,,,,共有21种,其中2人不在同一层的情况为,,,,,,,,,,共有10种.设事件为“这2人不在同一层”,由古典概型的概率计算公式,可得概率为.【点睛】本题主要考查了频率分布直方表的性质,中位数的求解,以及古典概型的概率计算等知识的综合应用,着重考查了分析问题和解答问题的能力,属于基础题.19、(Ⅰ);(Ⅱ)【解析】
(I)根据,利用二倍角公式得到,再由辅助角公式得到,然后根据正弦函数的性质求解.(Ⅱ)根据(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【详解】(I)因为,所以,,,或,或,因为,所以所以;(Ⅱ)由余弦定理得:,所以,所以,当且仅当取等号,又因为,所以,所以【点睛】本题主要考查二倍角公式,辅助角公式以及余弦定理,还考查了运算求解的能力,属于中档题.20、(1)函数的单调递增区间为和,单调递减区间为;(2).【解析】
(1)由题可得,结合的范围判断的正负,即可求解;(2)结合导数及函数的零点的判定定理,分类讨论进行求解【详解】(1),①当时,,∴函数在内单调递增;②当时,令,解得或,当或时,,则单调递增,当时,,则单调递减,∴函数的单调递增区间为和,单调递减区间为(2)(Ⅰ)当时,所以在上无零点;(Ⅱ)当时,,①若,即,则是的一个零点;②若,即,则不是的零点(Ⅲ)当时,,所以此时只需考虑函数在上零点的情况,因为,所以①当时,在上单调递增。又,所以(ⅰ)当时,在上无零点;(ⅱ)当时,,又,所以此时在上恰有一个零点;②当时,令,得,由,得;由,得,所以在上单调递减,在上单调递增,因为,,所以此时在上恰有一个零点,综上,【点睛】本题考查利用导数求函数单调区间,考查利用导数处理零点个数问题,考查运算能力,考查分类讨论思想21、(Ⅰ)证明见详解;(Ⅱ).【解析】
(Ⅰ)取中点为,根据几何关系,求证四边形为平行四边形,即可由线线平行推证线面平行;(Ⅱ)以为坐标原点,建立空间直角坐标系,求得直线的方向向量和平面的法向量,即可求得线面角的正弦值.【详解】(Ⅰ)取的中点,连接,.如下图所示:因为,分别是线段和的中点,所以是梯形的中位线,所以.又,所以.因为,,所以四边形为平行四边形,所以.所以,.所以四边形为平行四边形,所以.又平面,平面,所以平面.(Ⅱ)因为,且平面,故可以为原点,的方向为轴正方向建立如图所示的空间直角坐标系,如下图所示:不妨设,则,所以,,,,.所以,,.设平面的法向量为,则所以可取.设直线与平面所成的角为,则.故可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技园区场地租赁分成及人才引进合同
- 草场租赁与草原生态补偿及资源保护合同
- 清算还款协议书范本
- 建筑工程测量员专业服务协议
- 出租车乘客安全保障合同协议书
- 花艺沙龙培训
- 2024年“工会杯”职工技能竞赛化学检验员赛项理论考试题库(浓缩500题)
- 高三化学一轮复习 训练题-物质结构与性质
- 工厂成本方面培训
- 植物护理幼儿园
- 2025年中学教师资格考试《综合素质》教育法律法规经典案例分析及强化试题集(含答案)
- 2025年小学语文期末考试试题及答案
- 发改委立项用-超薄玻璃项目可行性研究报告
- 《等腰三角形的性质》课件
- 工业互联网与船舶行业融合应用参考指南 2025
- 2024年浙江省《辅警招聘考试必刷500题》考试题库附答案【综合题】
- 2025年北京市第一次普通高中学业水平合格性考试历史试题(含答案)
- 苏教版-数学二年级下册-期末试卷10套
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- ××团支部换届选举选票
- 复杂超限结构设计要点
评论
0/150
提交评论