版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南邵阳县八上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b22.已知二元一次方程组,则的值为()A.2 B. C.4 D.3.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…第n次移动到An.则△OA6A2020的面积是()A.505 B.504.5 C.505.5 D.10104.某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的众数是()最高气温(°C)1819202122天数12232A.20 B.20.5 C.21 D.225.下列命题是假命题的是().A.是最简二次根式 B.若点A(-2,a),B(3,b)在直线y=-2x+1,则a>bC.数轴上的点与有理数一一对应 D.点A(2,5)关于y轴的对称点的坐标是(-2,5)6.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=37.把一副三角板按如图叠放在一起,则的度数是A. B. C. D.8.如果分式方程的解是,则的值是()A.3 B.2 C.-2 D.-39.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.410.要使分式有意义,x的取值应满足()A.x≠1 B.x≠﹣2 C.x≠1或x≠﹣2 D.x≠1且x≠﹣211.下列逆命题是真命题的是()A.如果x=y,那么x2=y2B.相等的角是内错角C.有三个角是60°的三角形是等边三角形D.全等三角形的对应角相等12.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC二、填空题(每题4分,共24分)13.如图,是和的公共斜边,AC=BC,,E是的中点,联结DE、CE、CD,那么___________________.14.使有意义的的取值范围是_______.15.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.16.当m=____时,关于x的分式方程无解.17.如果那么_______________________.(用含的式子表示)18.若代数式x2+4x+k是完全平方式,则k=_______三、解答题(共78分)19.(8分)为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.(1)每个文具盒、每支钢笔各多少元?(2)若本次表彰活动,老师决定购买10件作为奖品,若购买个文具盒,10件奖品共需元,求与的函数关系式.如果至少需要购买3个文具盒,本次活动老师最多需要花多少钱?20.(8分)如图,在等腰△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE=∠A.(1)如图1,若BC=BD,∠ACB=90°,则∠DEC度数为_________°;(2)如图2,若BC=BD,求证:CD=DE;(3)如图3,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.21.(8分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=,T(m,﹣2)=.(1)填空:T(4,﹣1)=(用含a,b的代数式表示);(2)若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.22.(10分)如图,点E,F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于O,求证:OE=OF.23.(10分)如图,在平面直角坐标系中,直线与轴交于点,点在直线上,点是线段上的一个动点,过点作轴交直线点,设点的横坐标为.(1)的值为;(2)用含有的式子表示线段的长;(3)若的面积为,求与之间的函数表达式,并求出当最大时点的坐标;(4)在(3)的条件下,把直线沿着轴向下平移,交轴于点,交线段于点,若点的坐标为,在平移的过程中,当时,请直接写出点的坐标.24.(10分)如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.25.(12分)如图①,在平面直角坐标系中,直线交x轴、y轴分别交于点A、B,直线交x轴、y轴分别交于点D、C,交直线于点E,(点E不与点B重合),且,(1)求直线的函数表达式;(2)如图②,连接,过点O做交直线与点F,①求证:②直接写出点F的坐标(3)若点P是直线上一点,点Q是x轴上一点(点Q不与点O重合),当和全等时,直接写出点P的坐标.26.先化简,再从-2<x<3中选一个合适的整数代入求值.
参考答案一、选择题(每题4分,共48分)1、A【分析】由题意可知左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a-b),根据二者相等,即可解答.【详解】解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.【点睛】本题主要考查平方差公式的几何背景,解题的关键是运用阴影部分的面积相等得出关系式.2、D【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【详解】解:
②−①×2得,6y=9,解得,
把代入①得,,解得,
∴,
故选:D.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3、A【分析】由题意结合图形可得OA4n=2n,由2020÷4=505,推出OA2020=2020÷2=1010,A6到x轴距离为1,由此即可解决问题.【详解】解:由题意知OA4n=2n,∵2020÷4=505,∴OA2020=2020÷2=1010,A6到x轴距离为1,则△OA6A2020的面积是×1010×1=505(m2).故答案为A.【点睛】本题主要考查点的坐标的变化规律,发现图形得出下标为4的倍数时对应长度即为下标的一半是解题的关键.4、C【分析】根据众数的定义求解即可.【详解】∵21出现的次数最多,∴则该地区这10天最高气温的众数是21;故答案选C.【点睛】此题考查了众数,解题的关键是正确理解题意,抓住题目中的关键语句.5、C【分析】根据最简二次根式、一次函数及不等式、数轴及实数、轴对称和坐标的性质,对各个选项逐个分析,即可得到答案.【详解】是最简二次根式,故A正确;∵若点A(-2,a),B(3,b)在直线y=-2x+1,∴∴∴,即B正确;∵数轴上的点与实数一一对应∴C不正确;∵点A(2,5)关于y轴的对称点的坐标是(-2,5)∴D正确;故选:C.【点睛】本题考查了最简二次根式、一次函数、不等式、数轴、实数、轴对称、坐标的知识;解题的关键是熟练掌握最简二次根式、一次函数、数轴、实数、轴对称的性质,从而完成求解.6、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.7、A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,
∠α=∠1+∠B=135°+30°=165°.
故选A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8、C【分析】先把代入原方程,可得关于a的方程,再解方程即得答案.【详解】解:∵方程的解是,∴,解得:a=﹣1.经检验,a=﹣1符合题意.故选:C.【点睛】本题考查了分式方程的解及其解法,属于基本题型,熟练掌握分式方程的解法是解题关键.9、B【解析】有两种情况:①当∠A为顶角时,如图1,此时AE=AF=5cm.②当∠A为底角时,如图2,此时AE=EF=5cm.故选B.10、D【分析】根据分式的分母不为0来列出不等式,解不等式即可得到答案.【详解】解:由题意得,(x+2)(x﹣1)≠0,解得,x≠1且x≠﹣2,故选:D.【点睛】本题考查的是分式有意义的条件,掌握分式的分母不为0是解题的关键.11、C【分析】先写出各选项的逆命题,然后逐一判断即可得出结论.【详解】A.如果x=y,那么x2=y2的逆命题为:如果x2=y2,那么x=y,是假命题,故A选项不符合题意;B.相等的角是内错角的逆命题为:内错角相等,是假命题,故B选项不符合题意;C.有三个角是60°的三角形是等边三角形的逆命题为:等边三角形的三个角都是60°,是真命题,故C选项符合题意;D.全等三角形的对应角相等的逆命题为:对应角相等的两个三角形全等,是假命题,故D选项不符合题意;故选C.【点睛】此题考查的是写一个命题的逆命题和判断逆命题的真假,掌握平方的意义、等边三角形的性质和全等三角形的判定是解决此题的关键.12、B【解析】试题分析:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.∵在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),正确,故本选项错误.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确.C.∵在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),正确,故本选项错误.D.∵AD∥BC,∴∠A=∠C.由A选项可知,△ADF≌△CBE(ASA),正确,故本选项错误.故选B.二、填空题(每题4分,共24分)13、1【分析】先证明A、C、B、D四点共圆,得到∠DCB与∠BAD的是同弧所对的圆周角的关系,得到∠DCB的度数,再证∠ECB=45°,得出结论.【详解】解:∵AB是Rt△ABC和Rt△ABD的公共斜边,E是AB中点,∴AE=EB=EC=ED,∴A、C、B、D在以E为圆心的圆上,∵∠BAD=32°,∴∠DCB=∠BAD=32°,又∵AC=BC,E是Rt△ABC的中点,∴∠ECB=45°,∴∠ECD=∠ECB-∠DCB=1°.故答案为:1.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.14、【分析】根据二次根式有意义以及分式有意义得条件进一步求解即可.【详解】由题意得:,及,∴且,即,故答案为:.【点睛】本题主要考查了分式与二次根式有意义的情况,熟练掌握相关概念是解题关键.15、3.1【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.【详解】解:3.5952≈3.1(精确到0.01).
故答案为3.1.【点睛】本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.16、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.17、【分析】直接利用同底数幂的乘法运算法则将原式变形进而得出答案.【详解】解:(1)∵∴,
∴;故答案为ab.【点睛】本题考查了同底数幂的乘法及幂的乘方的逆运算,正确掌握运算法则是解题的关键.18、1【分析】利用完全平方公式的结构特征判断即可得到k的值.【详解】∵x2+1x+k是完全平方式,
∴k=1,
故答案为:1.【点睛】此题考查完全平方式,熟练掌握完全平方公式是解本题的关键.三、解答题(共78分)19、(1);(2)147元.【解析】(1)设每个文具盒x元,每支钢笔y元,由题意得:,解之得:.(2)由题意得:w=14x+15(10-x)=150-x,∵w随x增大而减小,,∴当x=3时,W最大值=150-3=147,即最多花147元.20、(1)67.5;(1)证明见解析;(3)DE-BE=1.【分析】(1)先根据等腰三角形的性质,得出∠A=∠B=45°=∠CDE,再根据BC=BD,可得出∠BDC的度数,然后可得出∠BDE的度数,最后根据三角形外角的性质可得出∠DEC的度数;(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;
(3)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出CE-BE=DE-DF=EF=1HE,即可得出结论.【详解】(1)解:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°=∠CDE,又BC=BD,∴∠BDC=∠BCD=(180°-∠B)=67.5°,∴∠BDE=∠BDC-∠CDE=67.5°-45°=11.5°,∴∠DEC=∠B+∠BDE=67.5°;故答案为:67.5;(1)证明:∵AC=BC,∠CDE=∠A,
∴∠A=∠B=∠CDE,
∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,
∴∠ACD=∠BDE,
又∵BC=BD,
∴BD=AC,
在△ADC和△BED中,,∴△ADC≌△BED(ASA),
∴CD=DE;(3)解:∵CD=BD,
∴∠B=∠DCB,
由(1)知:∠CDE=∠B,
∴∠DCB=∠CDE,
∴CE=DE,
如图,在DE上取点F,使得FD=BE,
在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),
∴CF=DE=CE,
又∵CH⊥EF,
∴FH=HE,∴DE-BE=DE-DF=EF=1HE=1.【点睛】本题主要考查了全等三角形的判定与性质,以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形以及等腰三角形.21、(1);(2)①a=1,b=-1,②m=2.【分析】(1)根据题目中的新运算法则计算即可;(2)①根据题意列出方程组即可求出a,b的值;②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.【详解】解:(1)T(4,﹣1)==;故答案为;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,当T(x,y)=T(y,x)时,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..22、详见解析【解析】求出BF=EC,可证△ABF≌△DCE,推出∠AFB=∠DEC,根据等角对等边即可得出答案.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=EC,在△ABF和△DCE中,∵,∴△ABF≌△DCE(AAS),∴∠AFB=∠DEC,∴OE=OF.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的判定的应用,解答此题的关键是推出△ABF≌△DCE.23、(1)7;(2);(3),;(4)【分析】(1)直接把点B坐标代入y=x+2求出n的值即可;(2)分别用m表示出点C和点P的坐标,再利用两点间距离公式求出CP的长即可;(3)根据图形得的面积的面积,通过计算可得S,当点与点重合时,有最大值,即时,有最大值,将m=5代求解即可;(4)求出直线DM的解析,进而得出直线MN的解析式,然后把m=5代入求值即可得到结论.【详解】(1)把点代入直线y=x+2得:n=5+2=,故答案为:7;(2)点的横坐标为,点,轴交直线于点,点,;(3)直线与轴交于点,点,的面积的面积,随的增大而增大,点是线段上的一个动点,当点与点重合时,有最大值,即时,有最大值.当时,点;(4)如图,∵直线沿着轴向下平移,交轴于点,交线段于点,∴设MN所在直线解析式为:∵∠DMN=90°,根据两条直线互相垂直,k的值互为相反数,且垂足为M,故可设直线DM的解析式为:y=-x+b,∵点的坐标为,∴,解得,b=,∴直线MN的解析式为:又点N的横坐标为5,∴当x=5时,y=,∴点.【点睛】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征,解题的关键是:准确画图,并利用数形结合的思想解决问题.24、8cm【解析】试题分析:先根据BC与CD的长度之和为34cm,可设BC=x,则CD=(34-x),根据勾股定理可得:AC2=AB2+BC2=62+x2,△ACD是以DC为斜边的直角三角形,AD=24cm,根据勾股定理可得:AC2=CD2-AD2=(34-x)2-242,∴62+x2=(34-x)2-242,解方程即可求解.试题解析:∵BC与CD的长度之和为34cm,∴设BC=xcm,则CD=(34﹣x)cm.∵在△ABC中,∠ABC=90°,AB=6cm,∴AC2=AB2+BC2=62+x2.∵△ACD是以DC为斜边的直角三角形,AD=24cm,∴AC2=CD2﹣AD2=(34﹣x)2﹣242,∴62+x2=(34﹣x)2﹣242,解得x=8,即BC=8cm.25、(1);(2)①证明见解析;②;(3)点P的坐标为、(-8,-3)、.【分析】(1)先求得A、B的坐标,再根据全等三角形的性质得出C、D的坐标,代入y=kx+b即可求得CD的解析式;(2)①证明△COF≌△AOE(ASA)即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 31126.2-2024纺织品全氟及多氟化合物的测定第2部分:气相色谱-质谱法
- 潍坊科技学院《平面设计竞赛》2023-2024学年第一学期期末试卷
- 2025作为实施《劳动合同法》的重要举措,昨日,全新的全日制劳动合同书
- 农场烟叶订购合同范例
- 工商注册租房合同范例
- 中冶集团合同范例
- 2025安全责任协议合同
- 婚纱租赁赠送合同范例
- 家具釆购合同范例
- 拍摄设备使用合同范例
- 电梯曳引系统设计-毕业设计
- 玛帕导条刀具课件
- 班会课件 勿以恶小而为之勿以善小而不为
- 中医针灸治疗中风后语言障碍病例分析专题报告
- 医院消毒供应中心清洗、消毒、灭菌质控评分表
- 2022年学校寒假德育特色作业实践方案(详细版)
- 可爱卡通插画风读书分享通用PPT模板
- 小学数学西南师大四年级上册五相交与平行《相交》课堂设计
- 光伏发电项目试验计划
- 图书馆工作流程(新)
- 1:青岩古镇发展及规划
评论
0/150
提交评论