2024届湖北省武汉二中学广雅中学数学八上期末质量跟踪监视试题含解析_第1页
2024届湖北省武汉二中学广雅中学数学八上期末质量跟踪监视试题含解析_第2页
2024届湖北省武汉二中学广雅中学数学八上期末质量跟踪监视试题含解析_第3页
2024届湖北省武汉二中学广雅中学数学八上期末质量跟踪监视试题含解析_第4页
2024届湖北省武汉二中学广雅中学数学八上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省武汉二中学广雅中学数学八上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=8米,OB=6米,A、B间的距离不可能是()A.12米 B.10米 C.15米 D.8米2.点P(3,-1)关于x轴对称的点的坐标是()A.(-3,1) B.(-3,-1) C.(1,-3) D.(3,1)3.在平面直角坐标系中,点A(2,3)与点B关于轴对称,则点B的坐标为A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)4.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A. B. C. D.5.如图,已知,点,,,...在射线上,点,,,...在射线上,,,,...均为等边三角形,若,则的边长是()A.4038 B.4036 C. D.6.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.67.下列长度的三条线段不能构成直角三角形的是()A.3、4、5 B.5、12、13 C.2、4、 D.6、7、88.下列实数为无理数的是()A.0.101 B. C. D.9.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有(

)A.5个 B.4个 C.3个 D.2个10.下列电子元件符号不是轴对称图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.已知,,则代数式的值是______________.12.x+=3,则x2+=_____.13.如图,AD是△ABC的中线,∠ADC=30°,把△ADC沿着直线AD翻折,点C落在点E的位置,如果BC=2,那么线段BE的长度为____________14.一次函数的图像不经过第__________象限.15.已知一组数据1,7,10,8,,6,0,3,若,则应等于___________.16.已知直线y=ax+b和直线y=bx+3a的交点坐标是(2,﹣1),则a+b=_____.17.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是______.18.长江大桥为三塔斜拉桥.如图所示,塔左右两边所挂的最长钢索,塔柱底端与点间的距离是米,则的长是_______米.三、解答题(共66分)19.(10分)已知,,求下列各式的值:(1);(2)20.(6分)阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到.例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形(如图2),它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.

(1)观察图3,根据图形,写出一个代数恒等式:______________;(2)现有若干块长方形和正方形硬纸片如图4所示.请你仿照图3,用拼图的方法分解因式,并画出拼图验证所得的图形.21.(6分)△ABC在平面直角坐标系中的位置如图所示,其中A(0,4),B(-2,2),C((-1,1),先将△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称.(1)画出△A1B1C1和△A2B2C2,并写出A2,B2,C2的坐标;(2)在x轴上确定一点P,使BP+A1P的值最小,请在图中画出点P;(3)点Q在y轴上且满足△ACQ为等腰三角形,则这样的Q点有个.22.(8分)如图,点、、、在一条直线上,,,,交于.(1)求证:.(2)求证:.23.(8分)如图,已知AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)问题探究:线段OB,OC有何数量关系,并说明理由;(2)问题拓展:分别连接OA,BC,试判断直线OA,BC的位置关系,并说明理由;(3)问题延伸:将题目条件中的“CD⊥AB于D,BE⊥AC于E”换成“D、E分别为AB,AC边上的中点”,(1)(2)中的结论还成立吗?请直接写出结论,不必说明理由.24.(8分)如图,BN是等腰Rt△ABC的外角∠CBM内部的一条射线,∠ABC=90°,AB=CB,点C关于BN的对称点为D,连接AD,BD,CD,其中CD,AD分别交射线BN于点E,P.(1)依题意补全图形;(2)若∠CBN=α,求∠BDA的大小(用含α的式子表示);(3)用等式表示线段PB,PA与PE之间的数量关系,并证明.25.(10分)如图,已知在坐标平面内,点的坐标是,点在点的正北方向个单位处,把点向上平移个单位再向左平移个单位得到点.在下图中画出平面直角坐标系和,写出点、点的坐标;在图中作出关于轴的轴对称图形;求出的面积26.(10分)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、字相乘法等等,将一个多项式适当分组后,可提公因式或运用公式继续分解的方法叫做分组分解.例如:利用这种分组的思想方法解决下列问题:(1)分解因式;(2)三边a,b,c满足判断的形状,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据两边之和大于第三边,两边之差小于第三边,AB的长度在2和14之间,故选C.考点:三角形三边关系.A2、D【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【详解】解:点P(3,-1)关于x轴对称的点的坐标是:(3,1).

故选:D.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.3、D【解析】试题解析:∵点(2,3)关于x轴对称;∴对称的点的坐标是(2,-3).故选D.考点:关于x轴、y轴对称的点的坐标.4、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5、D【分析】根据图形的变化发现规律即可得结论.【详解】解:观察图形的变化可知:

∵△A1B1A2、△A2B2A3、△A3B3A4……均为等边三角形,

∵OA1=2,

∴△A1B1A2、△A2B2A3、△A3B3A4……

边长分别为:21、22、23…

∴△A2019B2019A2020的边长为1.

故选D.【点睛】本题考查了规律型-图形的变化类,解决本题的关键是通过观察图形的变化寻找规律.6、D【解析】根据角平分线的性质进行求解即可得.【详解】∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DF=DE=6,故选D.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角的两边的距离相等是解题的关键.7、D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵52+122=132,∴此三角形是直角三角形,不符合题意;C、∵22+()2=42,∴此三角形是直角三角形,不符合题意;D、∵62+72≠82,∴此三角形不是直角三角形,符合题意;故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、D【解析】由题意根据无理数的概念即无理数就是无限不循环小数,进行分析判断可得答案.【详解】解:A、0.101是有理数,B、=3是有理数,C、是有理数,D、是无限不循环小数即是无理数,故选:D.【点睛】本题考查的是无理数的概念、掌握算术平方根的计算方法是解题的关键.9、C【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有-1的偶次幂都等于1.【详解】如果(x+6)x+1=1成立,则x+1=0或x+6=1或-1,即x=-1或x=-5或x=-7,当x=-1时,(x+6)0=1,当x=-5时,1-4=1,当x=-7时,(-1)-6=1,故选C.【点睛】本题考查了零指数幂的意义和1的指数幂,关键是熟练掌握零指数幂的意义和1的指数幂.10、C【解析】根据轴对称图形的概念对各个选项进行判断即可.【详解】解:C中的图案不是轴对称图形,A、B、D中的图案是轴对称图形,

故选:C.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线对称.二、填空题(每小题3分,共24分)11、15【分析】根据整式的乘法将原式展开,代入和的值即可得解.【详解】,将,代入得原式,故答案为:15.【点睛】本题主要考查了整式的乘法,熟练运用多项式乘以多项式的计算公式是解决本题的关键.12、1【解析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=1.故答案为1.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.13、【分析】根据折叠的性质判定△EDC是等边三角形,然后再利用Rt△BEC求BE.【详解】解:连接,是的中线,且沿着直线翻折,,是等腰三角形,,,为等边三角形,,在中,,【点睛】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等边三角形的性质求解.14、二【分析】根据k、b的正负即可确定一次函数经过或不经过的象限.【详解】解:一次函数的图像经过第一、三、四象限,不经过第二象限.故答案为:二【点睛】本题考查了一次函数的图像与性质,一次函数的系数是判断其图像经过象限的关键,,图像经过第一、二、三象限;,图像经过第一、三、四象限;,图像经过第一、二、四象限;,图像经过第二、三、四象限.15、5【分析】根据平均数公式求解即可.【详解】由题意,得∴故答案为:5.【点睛】此题主要考查对平均数的理解,熟练掌握,即可解题.16、1【分析】把交点坐标(2,﹣1)代入直线y=ax+b和直线y=bx+3a,解方程组即可得到结论.【详解】解:∵直线y=ax+b和直线y=bx+3a的交点坐标是(2,﹣1),∴,解得:,∴a+b=1,故答案为:1.【点睛】本题主要考查了两直线相交问题以及函数图象上点的坐标特征,满足解析式的点就在函数的图象上,在函数图象上的点,就一定满足函数解析式.17、2【解析】试题分析:依题意得,2a-1+(-a+2)=0,解得:a=-1.则这个数是(2a-1)2=(-3)2=2.故答案为2.点睛:本题考查了平方根的性质.根据正数有两个平方根,它们互为相反数建立关于a的方程是解决此题的关键.18、1【分析】根据题意,知此三角形是等腰三角形,又等腰三角形底边上的高也是底边上的中线,从而可求得BC的长.【详解】解:∵AB=AC,BD=228米,AD⊥BC,∴BD=CD,∴BC=2BD=1米.故答案为:1.【点睛】本题考查了等腰三角形的性质;能够运用数学知识解决实际问题,在实际问题中找着已知条件是正确解答题目的关键.三、解答题(共66分)19、【分析】(1)提出公因式2xy后即可代入求值;(2)可代入求出(x-y)2,再开方即可求得答案.【详解】(1)∵,∴原式=(2)∵==4∴=【点睛】此题考察代数式求值,注意(2)中x+y与x-y之间的关系转化.20、(1);(2),图详见解析【分析】(1)由题意根据面积的两种表达方式得到图3所表示的代数恒等式;(2)根据题意作长为a+2b,宽为a+b的长方形即可.【详解】解,(1)由图3知,等式为,(2)分解因式:,如图:【点睛】本题考查完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.21、(1)作图见解析,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);(2)见解析;(3)1.【分析】(1)△ABC向右平移3个单位,再向下平移1个单位到△A1B1C1,△A1B1C1和△A2B2C2关于x轴对称,根据平移的性质和轴对称的性质先找出对应顶点的坐标,顺次连接即可;

(2)依据轴对称的性质,连接BA2,交x轴于点P,此时BP+A1P的值最小;

(3)在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,即可得到Q点的数量.【详解】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求,根据图形可得,A2,B2,C2的坐标分别为A2(3,-3),B2(1,-1),C2(2,0);

(2)如图所示,连接BA2,交x轴于点P,则点P即为所求;

(3)根据点Q在y轴上且满足△ACQ为等腰三角形,在平面直角坐标系中,作线段AC的垂直平分线,与y轴有1个交点,分别以A,C为圆心,AC长为半径画弧,与y轴的交点有3个,可得这样的Q点有1个.

故答案为:1.【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,多数情况要作点关于某直线的对称点.22、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠B=∠E,∠BCA=∠EFD,证出BC=EF,即可得出结论;

(2)由全等三角形的性质得出AC=DF,∠ACB=∠DFE,证明△ACO≌△DFO(AAS),即可得出结论.【详解】(1)证明:∵AB∥DE,

∴∠B=∠E,

∵AC∥FD,

∴∠BCA=∠EFD,

∵FB=EC,

∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA)

(2)证明:∵△ABC≌△DEF,

∴AC=DF,∠ACB=∠DFE,

在△ACO和△DFO中,,∴△ACO≌△DFO(AAS),

∴AO=OD.【点睛】本题考查了全等三角形的判定与性质、平行线的性质等知识;证明三角形全等是解题的关键.23、(1)OB=OC,理由见解析;(2)AO⊥BC,理由见解析;(3)(1)(2)中的结论还成立,理由见解析.【分析】(1)根据垂直定义求出∠ADC=∠AEB=90°,根据AAS推出△ADC≌△AEB,根据全等得出AD=AE,∠B=∠C,得出BD=CE,根据AAS推出△BDO≌△CEO即可得出结论;(2)延长AO交BC于M,根据SAS推出△OBA≌△OCA,根据全等得出∠BAO=∠CAO,根据等腰三角形的性质推出即可;(3)求出AD=AE,BD=CE,根据SAS推出△ADC≌△AEB,根据全等三角形的性质得出∠DBO=∠ECO,根据AAS推出△BDO≌△CEO,根据全等三角形的性质得出OB=OC,根据SAS推出△OBA≌△OCA,推出∠BAO=∠CAO,根据等腰三角形的性质得出即可.【详解】(1)∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,在△ADC和△AEB中,∵,∴△ADC≌△AEB(AAS),∴AD=AE,∠B=∠C.∵AB=AC,∴BD=CE,在△BDO和△CEO中,∵,∴△BDO≌△CEO(AAS),∴OB=OC;(2)AO⊥BC.理由如下:延长AO交BC于M.在△OBA和△OCA中,∵,∴△OBA≌△OCA(SAS),∴∠BAO=∠CAO.∵AB=AC,∴AO⊥BC;(3)(1)(2)中的结论还成立.理由如下:∵D、E分别为AB,AC边上的中点,AC=AB,∴AD=AE,BD=CE,在△ADC和△AEB中,∵,∴△ADC≌△AEB(SAS),∴∠DBO=∠ECO,在△BDO和△CEO中,∵,∴△BDO≌△CEO(AAS),∴OB=OC,在△OBA和△OCA中,∵,∴△OBA≌△OCA(SAS),∴∠BAO=∠CAO.∵AB=AC,∴AO⊥BC.【点睛】本题考查了等腰三角形的性质、全等三角形的性质和判定的应用,解答此题的关键是推出△ACD≌△BCE和△CME≌△CND,注意:全等三角形的对应边相等,对应角相等.24、(1)补图见解析;(2)45°-α;(3)PA=2(PB+PE)..【解析】此题涉及的知识点是对称点的画法,角大小的求解,数量关系的证明,解答时第一问根据已知条件直接画图,连线;第二问根据对称图形性质可以算出角的大小;第三问证明两三角形全等就可以得到线段之间的关系。【详解】解:(1)如图所示:(2)∵∠ABC=90°∴∠MBC=∠ABC=90°∵点C关于BN的对称点为D∴BC=BD,∠CBN=∠DBN=α∵AB=BC∴AB=BD∴∠BAD=∠ADB=12180°-(3)猜想:PA=证明:过点B作BQ⊥BE交AD于Q∵∠BPA=∠DBN+∠ADB,∠ADB=45°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论