版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省郑州市郑州一八联合国际学校数学八上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.2.以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.3.如图,△ABC的面积是1cm2,AD垂直于∠ABC的平分线BD于点D,连接DC,则与△BDC面积相等的图形是()A. B. C. D.4.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于G,交BE于H.下列结论:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正确结论的序号是()A.①②③④ B.①②③ C.②④ D.①③5.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为()A.m≥4 B.m≤6 C.4<m<6 D.4≤m≤66.要使分式有意义,则的取值应满足()A. B. C. D.7.冬天到了,政府决定免费为贫困山区安装暖气,计划甲安装队为A山区安装660片,乙安装队为B山区安装600片,两队同时开工且恰好同时完工,甲队比乙队每天多安装20片.设乙队每天安装x片,根据题意,下面所列方程中正确的是()A. B. C. D.8.下列图形既是中心对称又是轴对称图形的是()A.平行四边形和矩形 B.矩形和菱形C.正三角形和正方形 D.平行四边形和正方形9.计算:﹣64的立方根与16的平方根的和是()A.0 B.﹣8 C.0或﹣8 D.8或﹣810.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为()A. B. C. D.二、填空题(每小题3分,共24分)11.的平方根是_____.12.成人每天的维生素D的摄入量约为0.0000046克,数据0.0000046用科学记数法可表示为_________________13.分解因式:_____.14.若xy=3,则15.命题“三个角都相等的三角形是等边三个角”的题设是_____,结论是_____.16.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.17.计算:18.计算-(-3a2b3)2的结果是_______.三、解答题(共66分)19.(10分)计算:(1)(2)20.(6分)某商店销售篮球和足球共60个.篮球和足球的进价分别为每个40元和50元,篮球和足球的卖价分别为每个50元和65元.设商店共有x个足球,商店卖完这批球(篮球和足球)的利润为y.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)商店现将篮球每个涨价a元销售,足球售价不变,发现这批球卖完后的利润和x的取值无关.求卖完这批球的利润和a的值.21.(6分)定义:如果三角形某一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)如图1,在中,,AB=,AC=.求证:是“好玩三角形”;(2)如图2,若等腰三角形是“好玩三角形”,DE=DF=20,求EF的长.22.(8分)(1)如图1,是的中线,,求的取值范围,我们可以延长到点,使,连接(如图2所示),这样就可以求出的取值范围,从而得解,请写出解题过程;(2)在(1)问的启发下,解决下列问题:如图3,是的中线,交于点,交于点,且,求证:.23.(8分)已知一次函数y=﹣x+4与x轴交于点A,与y轴交于点C,∠CAO=30°,B点在第一象限,四边形OABC为长方形,将B点沿直线AC对折,得到点D,连接点CD交x轴于点E.(1)M是直线AC上一个动点,N是y轴上一个动点,求出周长的最小值;(2)点P为y轴上一动点,作直线AP交直线CD于点Q,将直线AP绕着点A旋转,在旋转过程中,与直线CD交于Q.请问,在旋转过程中,是否存在点P使得为等腰三角形?如果存在,请求出∠OAP的度数;如果不存在,请说明理由.24.(8分)现有甲乙丙三个厂家都生产一种灯泡,他们对外都宣称自己的灯泡使用寿命为12个月,为了检查他们灯泡的真正使用寿命,现随机从三个厂家均抽查11个灯泡进行检测,得到的数据如下:(单位:月)甲厂78999111314161719乙厂779910101212121314丙厂77888121314151617(1)这三个生产厂家分别利用了统计中的哪个特征数(平均数,众数,中位数)进行宣传;(2)如果三家灯泡售价相同,作为顾客,你会选择购买哪家的产品,请说明理由.25.(10分)如图,△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别于AB,AC交于点D,E,求∠BCD的度数.26.(10分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,若直线AD与BC相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.(2)如图2,若直线AD与CB的延长线相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.
参考答案一、选择题(每小题3分,共30分)1、A【分析】甲型机器人每台万元,根据万元购买甲型机器人和用万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台万元,根据题意,可得故选.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.2、B.【解析】试题分析:根据轴对称图形的概念:A、C、D都可以沿某一直线折叠后重合,是轴对称图形.故选B.考点:轴对称图形.3、D【分析】利用等腰三角形“三线合一”的性质以及与三角形中线有关的面积计算,求得阴影面积为0.5,再计算各选项中图形的面积比较即可得出答案.【详解】延长AD交BC于E,∵BD是∠ABC平分线,且BD⊥AE,根据等腰三角形“三线合一”的性质得:AD=DE,∴,,∴,A、,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意;故选:D.【点睛】本题考查了等腰三角形的判定和性质,三角形中线有关的面积计算,熟知等腰三角形“三线合一”的性质是解题的关键.4、B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】解:∵BE是中线,
∴AE=CE,
∴S△ABE=S△BCE(等底等高的三角形的面积相等),故①正确;
∵CF是角平分线,
∴∠ACF=∠BCF,
∵AD为高,
∴∠ADC=90°,
∵∠BAC=90°,
∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,
∴∠ABC=∠CAD,
∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,
∴∠AFG=∠AGF,故②正确;
∵AD为高,
∴∠ADB=90°,
∵∠BAC=90°,
∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,
∴∠ACB=∠BAD,
∵CF是∠ACB的平分线,
∴∠ACB=2∠ACF,
∴∠BAD=2∠ACF,
即∠FAG=2∠ACF,故③正确;
根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;
故选B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.5、D【分析】根据题意可以作出合适的辅助线,然后根据题意,利用分类讨论的方法可以计算出m的两个极值,从而可以得到m的取值范围.【详解】解:如图所示,当直线l垂直平分OA时,O′B′和过A点且平行于x轴的直线有交点,∵点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°,∴∠BAO=30°,OB=2,∴OA=4,∵直线l垂直平分OA,点P(m,0)是直线l与x轴的交点,∴OP=4,∴当m=4;作BB″∥OA,交过点A且平行于x轴的直线与B″,当直线l垂直平分BB″和过A点且平行于x轴的直线有交点,∵四边形OBB″O′是平行四边形,∴此时点P与x轴交点坐标为(6,0),由图可知,当OB关于直线l的对称图形为O′B′到O″B″的过程中,点P符合题目中的要求,∴m的取值范围是4≤m≤6,故选:D.【点睛】本题考查坐标与图形的变化−对称,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.6、C【分析】根据分式有意义的条件是分母不等于零可得到,解不等式即可.【详解】解:由题意得:,解得:,故选:.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.本题不难,要注意审题.7、D【分析】根据题意,分别求出两队完工的天数列出方程即可.【详解】设乙队每天安装x片,则甲队每天安装x+20片,故选:D.【点睛】此题主要考查分式方程的实际应用,解题关键是理解题意,找出等量关系.8、B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、矩形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误;B、矩形、菱形既是轴对称图形,也是中心对称图形.故正确;C、等边三角形是轴对称图形,不是中心对称图形.故错误;D、正方形既是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形.故错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、C【分析】由题意得,﹣64的立方根为﹣4,16的平方根为±4,再计算它们的和即可.【详解】解:由题意得:﹣64的立方根为﹣4,16的平方根为±4,∴﹣4+4=0或﹣4-4=-1.故选:C.【点睛】此题考查立方根的定义和平方根的定义,注意:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根.10、A【分析】先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;【详解】解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.二、填空题(每小题3分,共24分)11、±【解析】分析:首先计算,再求出2的平方根即可.详解:2的平方根是±,∴的平方根是±.故答案为±.点睛:此题主要考查了平方根,正确把握平方根的定义是解题关键.12、4.6×10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据0.0000046用科学记数法表示为4.6×10故答案为4.6×10【点睛】此题考查科学记数法,解题关键在于使用负指数幂进行表达13、【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:.14、1【解析】根据比例的性质即可求解.【详解】∵xy=3,∴x=3y,∴原式=3y+yy故答案为:1.【点睛】本题考查了比例的性质,关键是得出x=3y.15、一个三角形的三个角都相等,这个三角形是等边三角形.【解析】如果一个三角形的三个角都相等,那么这个三角形是等边三角形.所以题设是一个三角形的三个角都相等,结论是这个三角形是等边三角形.考点:命题与定理.16、4或【详解】解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4或.17、【分析】将第一项分母有理化,第二项求出立方根,第三项用乘法分配律计算后,再作加减法即可.【详解】解:原式===.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.18、-9a4b6【分析】根据积的乘方和幂的乘方法则即可解答.【详解】解:【点睛】本题考查积的乘方和幂的乘方运算,熟练掌握其法则是解题的关键.三、解答题(共66分)19、(1);(2).【分析】(1)直接利用整式的乘除法法则计算即可;(2)据整式的除法运算顺序和法则计算可得.【详解】解:(1)原式=3a²b·(-3b)=-9a²b²;(2).
【点睛】本题考查了整式的乘除法,解题的关键是掌握整式的乘除法运算顺序和法则.20、(1)y=5x+600(0≤x≤60);(2)a=5,900元【分析】(1)设商店共有x个足球,则篮球的个数为(60-x),根据利润=售价-进价,列出等量关系即可;
(2)将(1)中的(50-40)换成(50+a-40)进行整理,分析即可.【详解】解:(1)设商店共有x个足球,依题意得:y=(65-50)x+(50-40)(60-x)即:y=5x+600(0≤x≤60);(2)根据题意,有y=(65-50)x+(50+a-40)(60-x)=(5-a)x+60(10+a)∵y的值与x无关,∴a=5,∴y=60×(10+5)=900,∴卖完这批球的利润为900元.【点睛】本题考查一次函数的应用,熟练掌握利润与售价、进价之间的关系是关键.21、(1)证明见解析;(2)或.【分析】(1)根据勾股定理求得BC,作BC边上的中线AD,利用勾股定理求得AD的长度,得出AD=BC,从而可证得是“好玩三角形”;(2)分EF边上的中线等于和以DF边上的中线等于DF两种情况讨论,画出图形,利用勾股定理即可解得EF;【详解】解:(1)∵在中,,AB=,AC=,∴,如下图,作BC边上的中线AD,根据勾股定理,.∴AD=BC,∴是“好玩三角形”;(2)如下图,若,则,作,∴(三线合一),在Rt△DNE中,根据勾股定理,在Rt△ENF中,根据勾股定理,,如下图,若DH=EF,∵DH为中线,DE=DF,∴,在Rt△DEH中,根据勾股定理,,即,解得即综上所述,或.【点睛】本题考查勾股定理,等腰三角形的性质.能熟练掌握勾股定理,利用勾股定理解直角三角形是解题关键.(2)中注意分类讨论.22、(1);(2)见解析.【分析】(1)延长到点,使,连接,易证,从而得,根据三角形三边关系,可得,进而即可求解;(2)先证,结合,可得,结合,即可得到结论.【详解】(1),(SAS),∴,∴在中,,即:,∴的范围是:;(2)延长到点,使,连接,由(1)知:,,,,,,,.【点睛】本题主要考查三角形全等的判定和性质定理,三角形三边的关系,等腰三角形的性质和判定定理,添加辅助线,构造全等三角形,是解题的关键.23、(1)1;(2)存在,15°或60°【分析】(1)首先确定A,C的坐标,由矩形的性质和折叠的性质可得AD=AB=4,∠CAD=60°,可得∠DAO=30°,由直角三角形的性质求出点D的坐标,过点E作y轴的对称点G,过点E作AC的对称点H,连接GH交y轴于点N,与AC交于M,即△EMN的周长最小值为GH,由直角三角形的性质可求AE,OE的长,可求点G,点H坐标,即可求解.(2)分两种情况讨论,由等腰三角形的性质可求解.【详解】解:(1)∵一次函数与x轴交于点A,与y轴交于点C,∴C(0,4),A(4,0),∴OC=AB=4,BC=OA=4,∵四边形AOCB是矩形,∠OAC=30°∴AC=2CO=1,∠CAB=60°,∵B点沿直线AC对折,使得点B落在点D处,∴AD=AB=4,∠CAD=60°,∴∠DAO=30°,如图,过点D作DF⊥AO于F,∵DF⊥AO,∠DAO=30°,∴DF=AD=2,AF=DF=2,∴OF=AO﹣AF=2,∴点D坐标(2,﹣2).如图,过点E作y轴的对称点G,过点E作AC的对称点H,连接GH交y轴于点N,与AC交于M,即△EMN的周长最小值为GH,∵∠OAD=30°,AD=4,∠ADC=90°∴AE=,∴OE=,∵点G,点E关于y轴对称,点E,点H关于AC对称,∴点G(﹣,0),点H(,4)∴GH=,∴△EMN的周长最小值为1.(2)存在点P使得△CPQ为等腰三角形,∵∠ACB=∠ACD=30°,∴∠OCE=30°,①如图,若CP=CQ,则∠CPQ=75°,∴∠OAP=90°﹣∠CPQ=15°,②如图,若PQ=CQ,则∠QPC=∠PCQ=30°,∴∠PAO=90°﹣∠CPQ=60°,综上所述,满足条件的∠OAP的值为15°或60°.【点睛】本题考查矩形、折叠、直角三角形、等腰三角形等知识和数形结合思想方法的综合应用,熟练应用数形结合的思想方法解决几何综合问题是解题关键.24、(1)甲厂用了统计中的平均数、乙厂用了统计中的众数、丙厂用了统计中的中位数进行宣传;(2)答案不唯一,详见解析【分析】(1)根据数据分析,三组数据平均数、中位数、众数为12的符合题意,可得乙厂的广告利用了统计中的众数.丙厂的广告利用了统计中的中位数.再进行少量计算、估算甲厂的平均数,可得甲厂的广告利用了统计中的平均数;(2)根据统计量的意义,结合题意,作出选择.【详解】解:(1)∵甲厂的平均数=甲厂的平均数=(7+8+9+9+9+11+13+14+16+17+19)÷11=12∴甲厂用了统计中的平均数进行宣传∵乙厂数据中12有3次,是众数,乙厂的众数为12∴乙厂用了统计中的众数进行宣传∵丙厂数据的中位数是12∴丙厂用了统计中的中位数进行宣传.(2)选用甲厂的产品,因为平均数较真实地反映了灯泡的使用寿命;(或选用丙厂的产品,因为丙厂有一半以上的灯泡使用寿命不少于12个月;).【点睛】本题考查了统计量的选择,掌握平均数、中位数、众数的定义.数据的平均数、众数、中位数是描述一组数据集中趋势的特征量25、10°【分析】在△ABC中,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022-2023学年山东省济南市钢城区人教版小学三年级下册数学期末试题及答案
- 2022-2023学年山东德州平原县五年级上册语文期末试卷及答案
- 燕京啤酒课程设计
- 2021-2022学年江苏省南通市如东县四年级上学期期末语文真题及答案
- 2021-2022学年贵州省遵义市红花岗区四年级上学期期末语文真题及答案
- 机设课程设计真难
- 王铎草书创作课程设计
- 2024年沪教版高三历史下册阶段测试试卷94
- 2025年高考物理复习热搜题速递之电磁振荡与电磁波(2024年7月)
- 初中语文七年级上册《3 雨的四季》教学设计
- 安全生产目标考核表
- 工程训练(广东工业大学)智慧树知到期末考试答案2024年
- 医疗技术行业碳中和战略与实践
- 租金评估技术报告范文模版
- 2024年江苏省专升本考试生理学医学影像技术测试题含解析
- 公司年薪制薪酬管理新规制度
- 初中数学九年级下册《位似》(1)教案
- 2024《安全生产法》及《刑法》关于安全生产的38条处罚红线详解培训
- 2022-2023学年重庆市渝北区人教PEP版五年级上册期末英语试卷
- 核算岗年终工作总结
- 造价年度工作总结
评论
0/150
提交评论