版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省漯河市召陵区八年级数学第一学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,已知△ABC与△ADE都是以A为直角顶点的等腰直角三角形,△ADE绕顶点A旋转,连接BD,CE.以下四个结论:①BD=CE;②∠AEC+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.42.若,则的值为()A. B. C. D.3.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cmB.6cm,6cm,12cmC.5cm,5cm,2cmD.10cm,15cm,17cm4.下列计算正确的是()A.3x﹣2x=1 B.a﹣(b﹣c+d)=a+b+c﹣dC.(﹣a2)2=﹣a4 D.﹣x•x2•x4=﹣x75.下列命题是真命题的是()A.若,则B.在同一平面内,如果直线,那么C.有一个角是的三角形是等边三角形D.的算术平方根是6.甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是8.9环,方差分别是s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,则测试成绩最稳定的是()A.甲 B.乙 C.丙 D.丁7.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是A.AB=DE B.∠B=∠E C.EF=BC D.EF//BC8.如图,直线,∠1=40°,∠2=75°,则∠3等于()A.55° B.60° C.65° D.70°9.下列图形中,不是轴对称图形的是()A. B. C. D.10.下列长度的线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.6,10,411.如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有()A.1个 B.2个 C.3个 D.4个12.已知点A(2﹣a,3)与点B(1,b﹣1)关于x轴对称,则(a+b)2019的值为()A.0 B.1 C.﹣1 D.32019二、填空题(每题4分,共24分)13.若等腰三角形的两边长为10,6,则周长为______.14.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.15.如图,在中,是上的一点,,点是的中点,交于点,.若的面积为18,给出下列命题:①的面积为16;②的面积和四边形的面积相等;③点是的中点;④四边形的面积为;其中,正确的结论有_____________.16.因式分解:=______,=________.17.如图,在三角形纸片中,,折叠纸片,使点落在边上的点处,折痕与交于点,则折痕的长为_____________;18.已知是方程3x﹣my=7的一个解,则m=.三、解答题(共78分)19.(8分)如图,已知点B、F、C、E在一条直线上,BF=EC,AB∥ED,AB=DE.求证:∠A=∠D.20.(8分)如图,在和中,,,与相交于点.(1)求证:;(2)是何种三角形?证明你的结论.21.(8分)先化简:,然后从,,,四个数中选取一个你认为合适的数作为的值代入求值.22.(10分)王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.(1)求证:;(2)求两堵木墙之间的距离.23.(10分)先化简,再求值:,其中.24.(10分)如图:在平面直角坐标系中A(−3,2),B(−4,−3),C(−1,−1).(1)在图中作出△ABC关于y轴对称图形△A1B1C1;(2)写出A1、B1、C1的坐标分别是A1(___,___),B1(___,___),C1(___,___);(3)△ABC的面积是___.25.(12分)在平面直角坐标系中,有点,.(1)若线段轴,求点、的坐标;(2)当点到轴的距离与点到轴的距离相等时,求点所在的象限.26.某公司购买了一批、型芯片,其中型芯片的单价比型芯片的单价少9元,已知该公司用3120元购买型芯片的条数与用4200元购买型芯片的条数相等.(1)求该公司购买的、型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条型芯片?
参考答案一、选择题(每题4分,共48分)1、C【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠CFG=90°,进而得出结论;④由∠BAE+∠EAD+∠DAC+∠BAC=360,即可得出结论.【详解】①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正确;
②∵△ABD≌△ACE,∴∠ABD=∠ACE,∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,而∠ACE与∠AEC不一定相等,∴②错误;③设BD与CE、AC的交点分别为F、G,∵△ABD≌△ACE,∴∠ABD=∠ACE,∠AGB=∠FGC,
∵∠CAB=90°,
∴∠BAG=∠CFG=90°,
∴BD⊥CE,∴③正确;④∵∠BAE+∠EAD+∠DAC+∠BAC=360,∠EAD=∠BAC=90°,
∴∠BAE+∠DAC=360-90°-90°=180,∴④正确;综上,①③④正确,共3个.故选:C.【点睛】本题考查了等腰直角三角形的性质、旋转变换的性质、全等三角形的判定和性质,解题的关键是灵活运用这些知识解决问题.2、A【详解】∵,∴;故选A.3、B【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4、D【分析】直接利用积的乘方运算法则以及去括号法则分别化简得出答案.【详解】解:A、3x﹣2x=x,故此选项错误;B、a﹣(b﹣c+d)=a﹣b+c﹣d,故此选项错误;C、(﹣a2)2=a4,故此选项错误;D、﹣x•x2•x4=﹣x7,故此选项正确.故选:D.【点睛】本题考查了积的乘方运算法则以及去括号法则,正确掌握相关运算法则是解题关键.5、B【分析】分情况求解即可;根据垂直于同一条直线的两条直线互相平行即可解答;根据等边三角形的判定即可解答;计算即可求出值解答.【详解】解:或故A选项错误;故B选项正确;有一个角是60°的等腰三角形是等边三角形,缺少等腰的话这句话不成立,故C选项错误;,4的算术平方根是2,故D选项错误;故选:B.【点睛】本题考查都是比较基础的知识点,依次梳理四个选项即可得到正确的答案,其中第4个选项是常考的易错题,需要重视.6、A【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,∴S丁2>S丙2>S乙2>S甲2,∴射箭成绩最稳定的是甲;故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、C【详解】试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解:∵AB∥DE,AC∥DF,∴∠A=∠D,AB=DE,则△ABC和△DEF中,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故D选项错误;故选C.考点:全等三角形的判定.8、C【解析】试题分析:如图:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选C.考点:1.三角形内角和定理;2.对顶角、邻补角;3.平行线的性质9、A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10、C【解析】根据三角形三边关系,两边之和大于第三边,对每个选项进行分析即可得出答案.【详解】根据三角形的三边关系,得A.3+4=7<8,不能组成三角形;B.5+6=11,不能组成三角形;C.5+6=11>10,能够组成三角形;D.6+4=10,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.11、D【解析】试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(4)S1=,S2=,S1=,∵,∴S1+S2=S1.综上,可得:面积关系满足S1+S2=S1图形有4个.故选D.考点:勾股定理.12、C【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求出a、b,然后代入代数式进行计算即可得解.【详解】解:∵点A(2﹣a,3)与点B(1,b﹣1)关于x轴对称,∴2﹣a=1,b﹣1=﹣3,解得a=1,b=﹣2,∴(a+b)2019=(1﹣2)2013=﹣1.故选:C.【点睛】本题本题主要考查代数式的求值及关于x轴对称的点的特点,掌握关于x轴对称的点的特征是解题的关键.二、填空题(每题4分,共24分)13、26或1【分析】题目给出等腰三角形有两条边长为10和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若10为腰长,6为底边长,符合三角形的两边之和大于第三边,∴周长=10+10+6=26;(2)若6为腰长,10为底边长,符合三角形的两边之和大于第三边,∴周长=6+6+10=1.故答案为:26或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.14、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.15、③④【分析】①根据等高的三角形面积比等于底边比即可求解;②先分别得出△ABE的面积与△BCD的面积的关系,然后进一步求解即可;③过点D作DG∥BC,通过三角形中位线性质以及全等三角形的判定和性质进一步求解即可;④根据题意将该四边形面积计算出来即可.据此选出正确的选项从而得出答案.【详解】①∵,∴EB=BC,∴的面积=,故①错误;②∵,点D为AC的中点,∴△ABE的面积≠△BCD的面积,∴的面积和四边形的面积不相等,故②错误;③如图,过点D作DG∥BC,∵D是AC中点,DG∥BC,∴DG=,∵,∴DG=EB,∵DG∥BC,∴∠DGF=∠BEF,∠GDF=∠EBF,在△DGF与△BEF中,∵∠DGF=∠BEF,DG=EB,∠GDF=∠EBF,∴△DGF≌△BEF(ASA),∴DF=BF,∴点是的中点,故③正确;④四边形的面积=,故④正确;综上所述,正确的结论有:③④,故答案为:③④.【点睛】本题主要考查了三角形的基本性质与全等三角形的判定及性质的综合运用,熟练掌握相关概念是解题关键.16、(x+9)(x-9)3a【分析】(1).利用平方差公式分解因式;(2).先提公因式,然后利用完全平方公式分解因式.【详解】(1)(x+9)(x-9);(2).【点睛】本题考查了利用提公因式法分解因式和利用公式法分解因式,解题的关键是根据式子特点找到合适的办法分解因式.17、4【分析】根据勾股定理求得,,根据折叠的性质求得∠CBE=∠ABE=∠ABC=30°,继而证得BE=AE,在Rt△BCE中,利用勾股定理列方程即可求得答案.【详解】在Rt△ABC中,,设,则,∵,即,解得:,∴,,∵折叠△ABC纸片使点C落在AB边上的D点处,
∴∠CBE=∠ABE,
在Rt△ABC中,∠A=30°,∴∠ABC=60°,∴∠CBE=∠ABE=∠ABC=30°,∴∠ABE=∠A=30°,∴BE=AE,在Rt△BCE中,∠C=90°,,,∵,即,解得:.【点睛】本题主要考查了勾股定理的应用,含30度的直角三角形的性质以及折叠的性质,利用勾股定理构建方程求线段的长是解题的关键.领会数形结合的思想的应用.18、.【解析】试题分析:∵是方程3x﹣my=7的一个解,∴把代入方程可得3×2﹣3m=7,解得m=.故答案为.考点:二元一次方程的解.三、解答题(共78分)19、证明见解析【分析】由,可得,由已知AB∥ED,可得∠∠,易证,即可证得结论.【详解】证明:∵,
∴,即.∵AB∥ED,∴∠∠,
在与中,,
∴,
∴∠∠【点睛】本题考查了全等三角形的判定与性质以及平行线的性质.解题的关键是“等边加等边仍为等边”证得.20、(1)见解析;(2)是等腰三角形,证明见解析【分析】(1)根据已知条件,用HL直接证明Rt△ABC≌Rt△DCB即可;(2)利用全等三角形的对应角相等得到∠ACB=∠DBC,即可证明△OBC是等腰三角形.【详解】证明:(1)在和中,,为公共边,∴(2)是等腰三角形∵∴∴∴是等腰三角形【点睛】此题主要考查学生对直角三角形全等的判定和性质以及等腰三角形的判定的理解和掌握,熟练掌握相关判定定理和性质定理是解题关键.21、,选,则原式.【分析】先将除法转化为乘法进行约分化简,再选取合适的x的值代入计算即可.【详解】∵x≠0,1,-1,∴,∴原式.【点睛】本题考查了分式的化简求值,要注意,取合适的数代入求值时,要特注意原式及化简过程中的每一步都有意义.22、(1)证明见解析;(2)两堵木墙之间的距离为.【分析】(1)根据同角的余角相等可证,然后利用AAS即可证出;(2)根据题意即可求出AD和BE的长,然后根据全等三角形的性质即可求出DC和CE,从而求出DE的长.【详解】(1)证明:由题意得:,,∴,∴,∴在和中,∴;(2)解:由题意得:,∵,∴,∴,答:两堵木墙之间的距离为.【点睛】此题考查的是全等三角形的应用,掌握全等三角形的判定及性质是解决此题的关键.23、,1【分析】先根据完全平方公式、平方差公式和单项式乘多项式法则化简原式,再将x的值代入计算可得.【详解】解:当x=-2时,原式=24-1=1.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是掌握完全平方公式、平方差公式和单项式乘多项式法则.24、(1)详见解析;(2)A1(3,2),B1(4,-3),C1(1,-1);(3)6.1.【分析】(1)分别作出点A、B、C关于y轴对称的点A1,B1,C1,然后顺次连接即可;(2)根据坐标系,写出对应点的坐标.(3)利用△ABC所在梯形面积减去周围三角形面积,进而得出答案.【详解】(1)如图所示,△A1B1C1即为所求.(2)A1(3,2),B1(4,-3),C1(1,-1);(3)如图所示,S△ABC=S梯形ABDE-S△AEC-S△DBC=(2+3)×(3+2)2×33×2=12.1﹣3﹣3=6.1.故答案为6.1.【点睛】本题考查了轴对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版星巴克加盟店设备维护合同
- 个人影视作品版权转让合同(2024版)3篇
- 2024示范文本:二手车买卖合同车辆安全检测规范2篇
- 2024试乘试驾活动电子合同范本12篇
- 2025年度二手吊车评估与交易中介合同3篇
- 项目建议书(含设计任务书)及可行性研究报告编制技术咨询合同模板
- 2025年度码头船舶停靠与货物仓储一体化租赁合同4篇
- 2025年度临时医疗护理人员派遣服务合同4篇
- 2025年税务顾问服务合同协议书适用于企业集团6篇
- 众维重工2025年度钢结构建筑工程智能化控制系统采购合同2篇
- 《穿越迷宫》课件
- 《C语言从入门到精通》培训教程课件
- 2023年中国半导体行业薪酬及股权激励白皮书
- 2024年Minitab全面培训教程
- 社区电动车棚新(扩)建及修建充电车棚施工方案(纯方案-)
- 项目推进与成果交付情况总结与评估
- 铁路项目征地拆迁工作体会课件
- 医院死亡报告年终分析报告
- 建设用地报批服务投标方案(技术方案)
- 工会工作人年度考核个人总结
- 上海民办杨浦实验学校初一新生分班(摸底)语文考试模拟试卷(10套试卷带答案解析)
评论
0/150
提交评论