




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省莆田二十四中学八上数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,小峰从点O出发,前进5m后向右转45°,再前进5m后又向右转45°,…,这样一直走下去,他第一次回到出发点O时,一共走的路程是()A.10米 B.20米 C.40米 D.80米2.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟3.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个4.已知点,均在双曲线上,下列说法中错误的是()A.若,则 B.若,则C.若,则 D.若,则5.下列变形中是因式分解的是()A. B.C. D.6.下列运算结果为的是A. B. C. D.7.如图是一个的方阵,其中每行、每列的两数和相等,则可以是()A.-2 B. C.0 D.8.如图,中,,,DE是AC边的垂直平分线,则的度数为()A. B. C. D.9.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是()A.②③ B.③④ C.②③④ D.①②③④10.点(﹣1,2)关于x轴对称的点的坐标是()A.(1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,﹣1)11.如图,在中,,高BE和CH的交点为O,则∠BOC=()A.80° B.120° C.100° D.150°12.如图,将矩形纸片ABCD折叠,AE、EF为折痕,点C落在AD边上的G处,并且点B落在EG边的H处,若AB=3,∠BAE=30°,则BC边的长为()A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=°14.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.15.分式的最简公分母是_______.16.计算的结果等于_______.17.如图:已知AB=AD,请添加一个条件使得△ABC≌△ADC,_______(不添加辅助线)18.如图,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=________时,形成的Rt△ABP与Rt△PCD全等.三、解答题(共78分)19.(8分)我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:(2)三边,,满足,判断的形状.20.(8分)某校初二年级的同学乘坐大巴车去展览馆参观,展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达,已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.21.(8分)阅读题:在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了。有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:因式分解的结果为,当时,,此时可以得到数字密码1.(1)根据上述方法,当时,对于多项式分解因式后可以形成哪些数字密码?(写出三个).(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为,求出一个由多项式分解因式后得到的密码(只需一个即可).(3)若多项式因式分解后,利用本题的方法,当时可以得到其中一个密码为2434,求的值.22.(10分)三角形三条角平分线交于一点.23.(10分)“太原市批发市场”与“西安市批发市场”之间的商业往来频繁,如图,“太原市批发市场”“西安市批发市场”与“长途汽车站”在同一线路上,每天中午12:00一辆客车由“太原市批发市场”驶往“长途汽车站”,一辆货车由“西安市批发市场”驶往“太原市批发市场”,假设两车同时出发,匀速行驶,图2分别是客车、货车到“长途汽车站”的距离与行驶时间之间的函数图像.请你根据图象信息解决下列问题:(1)由图2可知客车的速度为km/h,货车的速度为km/h;(2)根据图2直接写出直线BC的函数关系式为,直线AD的函数关系式为;(3)求点B的坐标,并解释点B的实际意义.24.(10分)已知:如图,点是正比例函数与反比例函数的图象在第一象限的交点,轴,垂足为点,的面积是2.(1)求的值以及这两个函数的解析式;(2)若点在轴上,且是以为腰的等腰三角形,求点的坐标.25.(12分)先化简再求值:若,且,求的值.26.已知,在平面直角坐标系中的位置如图所示.(1)把向下平移2个单位长度得到,请画出;(2)请画出关于轴对称的,并写出的坐标;(3)求的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】小峰从O点出发,前进5米后向右转45°,再前进5米后又向右转45°,…,这样一直走下去,他第一次回到出发点O时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】依题意可知,小峰所走路径为正多边形,设这个正多边形的边数为n,则45n=360,解得:n=8,∴他第一次回到出发点O时一共走了:5×8=40米.故选:C.【点睛】此题考查多边形的外角和,正多边形的判定与性质.解题关键是根据每一个外角判断多边形的边数.2、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.3、C【解析】根据轴对称的定义逐一判断即可.【详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.4、D【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线,用y1、y2表示出x1,x2,据此进行判断.【详解】∵点(x1,y1),(x2,y2)均在双曲线上,∴,.A、当x1=x2时,-=-,即y1=y2,故本选项说法正确;B、当x1=-x2时,-=,即y1=-y2,故本选项说法正确;C、因为双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当0<x1<x2时,y1<y2,故本选项说法正确;D、因为双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当x1<x2<0时,y1>y2,故本选项说法错误;故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5、B【分析】根据因式分解的定义:把一个多项式分解成几个整式乘积的形式,逐一进行判断即可.【详解】A.结果不是整式乘积的形式,故错误;B.结果是整式乘积的形式,故正确;C.结果不是整式乘积的形式,故错误;D.结果不是整式乘积的形式,故错误;故选:B.【点睛】本题主要考查因式分解,掌握因式分解的结果是整式乘积的形式是解题的关键.6、D【分析】根据整式运算法则逐个分析即可.【详解】A.,B.,C.=,D.=.故选D【点睛】本题考核知识点:整式基本运算.解题关键点:掌握实数运算法则.7、B【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:a+|-2|=则a+2=3,
解得:a=1,
故a可以是.
故选:B.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.8、A【分析】由等腰三角形性质,得到,由DE垂直平分AC,得到AE=CE,则,然后求出.【详解】解:∵在中,,,∴,∵DE是AC边的垂直平分线,∴AE=CE,∴,∴;故选择:A.【点睛】本题考查了等腰三角形的性质,垂直平分线性质定理,以及三角形内角和定理,解题的关键是掌握所学性质,正确求出.9、C【分析】分别在以上四种情况下以P为圆心,PQ的长度为半径画弧,观察弧与直线AM的交点即为Q点,作出后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,所以不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,但是此时两个三角形全等,所以形状相同,所以唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以④正确.综上:②③④正确.故选C.【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q是关键.10、C【解析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】点(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),故选C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11、C【分析】在中根据三角形内角和定理求出,然后再次利用三角形内角和定理求出,问题得解.【详解】∵BE和CH为的高,∴.∵,∴在中,,在中,,∴故选C.【点睛】本题考查三角形内角和定理,熟知三角形内角和为180°是解题关键.12、A【解析】利用三角函数求出直角三角形各边长度,再证明△AEC1和△CC1E是等边三角形,即可求出BC长度。【详解】解:连接CC1,如下图所示∵在Rt△ABE中,∠BAE=30,AB=3∴BE=AB×tan30°=1,AE=2,∴∠AEB1=∠AEB=60°由AD∥BC,得∠C1AE=∠AEB=60°∴△AEC1为等边三角形,∴△CC1E也为等边三角形,∴EC=EC1=AE=2∴BC=BE+EC=3所以A选项是正确的【点睛】本题考查直角三角形中的边角关系,属于简单题,关键会用直角三角函数求解直角边长。二、填空题(每题4分,共24分)13、15【解析】解:∵AD是等边△ABC的中线,,,,,,14、【解析】试题分析:解:设y=x+b,∴3=2+b,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.15、【分析】根据题意,把分母进行通分,即可得到最简公分母.【详解】解:分式经过通分,得到;∴最简公分母是;故答案为:.【点睛】本题考查了最简公分母的定义,解题的关键是掌握公分母的定义,正确的进行通分.16、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算17、DC=BC(∠DAC=∠BAC)【分析】根据已知条件,已知三角形的两条边相等,若使三角形全等,由SSS或SAS都可判定,即添加边相等或夹角相等即可.【详解】∵AB=AD,AC=AC∴添加DC=BC(或∠DAC=∠BAC)即可使△ABC≌△ADC,故答案为:DC=BC(∠DAC=∠BAC).【点睛】此题主要考查添加一个条件判定三角形全等,熟练掌握,即可解题.18、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】当BP=1时,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=1,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角.三、解答题(共78分)19、(1);(2)是等腰三角形,理由见解析【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c的关系,判断三角形形状即可.【详解】解:(1)=(2)∵∴∴∴或,∴是等腰三角形.【点睛】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键.20、1千米/小时.【分析】设1号车的平均速度为x千米/小时,则2号车的平均速度为1.2x千米/小时,根据时间=路程÷速度结合1号车比2号车多用3分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设1号车的平均速度为x千米/小时,则2号车的平均速度为1.2x千米/小时,依题意,得:,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴1.2x=1.答:2号车的平均速度为1千米/小时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1)211428,212814或142128;(2)48100;(3)【分析】(1)将分解因式,再进行组合即可;(2)将分解因式,再根据已知得到即可;(3)根据密码是2434,得到饮水分解后的结果,多项式相乘再使各项系数相等即可解题.【详解】解:(1),当时,,可得数字密码是211428;也可以是212814;142128;(写出一个即给分)(2)由题意得:,解得,而,所以可得数字密码为48100;(3)∵密码为2434,∴当时,∴,即:,∴,解得.【点睛】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题;考查了用类比的方法解决问题.22、对【解析】试题分析:根据三角形的角平分线的性质即可判断,若动手操作则更为直观.三角形三条角平分线交于一点,本题正确.考点:角平分线的性质点评:熟练掌握基本图形的性质是学好图形问题的基础,因而此类问题在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般.23、(1)60,30;(2),;(3)点的坐标为,点代表的实际意义是此时客车和货车相遇.【分析】(1)由图象可知客车6小时行驶的路程是360千米,货车2小时行驶的路程为60千米,从而可以求得客车和货车的速度;(2)先求出点D的横坐标,然后利用待定系数法,利用点(0,360)和(6,0)求出直线BC的解析式,利用点A和点D坐标求出直线AD的解析式,即可得到答案.(3)把直线BC和直线AD联合,组成方程组,即可求出点B的坐标,然后得到答案.【详解】解:由图象可得,客车的速度是:360÷6=60km/h,货车的速度是:km/h,故答案为:60;30.根据题意,货车行驶全程所用的时间为:小时;∴点D的坐标为(14,360);设直线BC为,把点(0,360)和(6,0)代入,得,解得:,∴直线BC为:;设直线AD为,把点A(2,0)和点D(14,360)代入,得,解得:,∴直线AD为:;故答案为:,;由知,客车由“太原市批发市场”到“长途汽车站”对应的函数关系式为:货车由“长途汽车站”到“太原市批发市场”对应的函数关系式为:,解得:;点的坐标为:;∴点代表的实际意义是此时客车和货车相遇.【点睛】本题考查一次函数的应用,以及根据函数图像获取信息,解答此类问题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备检修安全管理制度
- 设备等级评估管理制度
- 2025年中国家庭影院立体声接收器行业市场全景分析及前景机遇研判报告
- 设计成果运用管理制度
- 评估公司价格管理制度
- 诊所医疗软件管理制度
- 诊所财务制度管理制度
- 贝壳门店分级管理制度
- 财务集中中心管理制度
- 账务实物分开管理制度
- 炼钢-精炼-连铸过程钢水页PPT课件
- 【北师大版】七年级上册数学 第四章 图形的全等 单元检测(含答案)
- 《教育学原理》期末考试试卷试题A及答案
- 安全知识进校园宣传课件——XX小学
- 陈倍生妙派风水秘诀笔记
- 《扫除道》樊登读书文字版
- 钠冷快堆中的结构材料
- 教学演示文稿,建筑企业科技创新方法讲座()
- 中国传统节日文化中现代德育价值的研究课题结题报告
- 肺动脉导管监测的参数及意义
- 职称评审申报系统PPT课件
评论
0/150
提交评论