版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省桐城实验中学数学八上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠C=63°,AD是BC边上的高,AD=BD,点E在AC上,BE交AD于点F,BF=AC,则∠AFB的度数为().A.27° B.37° C.63° D.117°2.如果把分式中的、同时扩大为原来的2倍,那么得到的分式的值()A.不变 B.缩小到原来的C.扩大为原来的2倍 D.扩大为原来的4倍3.把分式分子、分母中的,同时扩大为原来的2倍,那么该分式的值()A.扩大为原来的2倍 B.缩小为原来的2倍C.不变 D.扩大为原来的4倍4.如图,在△ABC中,∠CAB=90°,∠ABC=60°,BD平分∠ABC,若CD=6,则AD的长为()A.2 B.3 C.1 D.1.55.下列标志中属于轴对称图形的是()A. B. C. D.6.已知一个多边形的每个内角都等于,则这个多边形一定是()A.七边形 B.正七边形 C.九边形 D.不存在7.如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙 B.甲和丙 C.乙和丙 D.只有乙8.如图,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你认为正确的序号是()A.①②③ B.①③④ C.②③④ D.①②③④9.在,,0,-2这四个数中,是无理数的为()A.0 B. C. D.-210.每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有()A.1天 B.2天 C.3天 D.4天11.下列命题中是真命题的是()A.三角形的任意两边之和小于第三边B.三角形的一个外角等于任意两个内角的和C.两直线平行,同旁内角相等D.平行于同一条直线的两条直线平行12.下列图标中,不是轴对称图形的是().A. B. C. D.二、填空题(每题4分,共24分)13.9的平方根是_________.14.点(-2,1)点关于x轴对称的点坐标为___;关于y轴对称的点坐标为__.15.如图,等腰直角三角形ABC中,AB=4cm.点是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.16.命题“对顶角相等”的逆命题是__________.17.如果关于的方程的解为,则__________18.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为_________.三、解答题(共78分)19.(8分)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线DE经过点C,过A作AD⊥DE于点D,过B作BE⊥DE于点E,则△BEC≌△CDA,我们称这种全等模型为“K型全等”.(不需要证明)(模型应用)若一次函数y=kx+4(k≠0)的图像与x轴、y轴分别交于A、B两点.(1)如图2,当k=-1时,若点B到经过原点的直线l的距离BE的长为3,求点A到直线l的距离AD的长;(2)如图3,当k=-时,点M在第一象限内,若△ABM是等腰直角三角形,求点M的坐标;(3)当k的取值变化时,点A随之在x轴上运动,将线段BA绕点B逆时针旋转90°得到BQ,连接OQ,求OQ长的最小值.20.(8分)如图所示,在△ABC中,∠BAC=30°,∠C=70°,AF平分∠BAC,BF平分∠CBE,AF交BC于点D,求∠BDA和∠F的度数.21.(8分)在平面直角坐标中,四边形为矩形,如图1,点坐标为,点坐标为,已知满足.(1)求的值;(2)①如图1,分别为上一点,若,求证:;②如图2,分别为上一点,交于点.若,,则___________(3)如图3,在矩形中,,点在边上且,连接,动点在线段是(动点与不重合),动点在线段的延长线上,且,连接交于点,作于.试问:当在移动过程中,线段的长度是否发生变化?若不变求出线段的长度;若变化,请说明理由.22.(10分)如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.23.(10分)为改善交通拥堵状况,我市进行了大规模的道路桥梁建设.已知某路段乙工程队单独完成所需的天数是甲工程队单独完成所需天数的1.5倍,如果按甲工程队单独工作20天,再由乙工程队单独工作30天的方案施工,这样就完成了此路段的.(1)求甲、乙工程队单独完成这项工程各需多少天?(2)已知甲工程队每天的施工费用是2万元,乙工程队每天的施工费用为1.2万元,要使该项目的工程费不超过114万元,则需要改变施工方案,但甲乙两个工程队不能同时施工,乙工程队最少施工多少天才能完成此项工程?24.(10分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,若直线AD与BC相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.(2)如图2,若直线AD与CB的延长线相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.25.(12分)解不等式组:,并把它的解集在数轴上表示出来.26.(1)求值:;(2)解方程:.
参考答案一、选择题(每题4分,共48分)1、D【分析】利用HL证出RtBDF≌RtADC,从而得出∠BFD=∠C=63°,再根据平角的定义即可求出结论.【详解】解:∵AD是BC边上的高,∴∠BDF=∠ADC=90°在RtBDF和RtADC中∴RtBDF≌RtADC∴∠BFD=∠C=63°∴∠AFB=180°-∠BFD=117°故选D.【点睛】此题考查的是全等三角形的判定及性质,掌握利用HL判定两个三角形全等是解决此题的关键.2、B【分析】根据分式的基本性质即可求出答案.【详解】解:;∴得到的分式的值缩小到原来的;故选:B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.3、A【分析】当分式中x和y同时扩大2倍,得到,根据分式的基本性质得到,则得到分式的值扩大为原来的2倍.【详解】分式中x和y同时扩大2倍,则原分式变形为,故分式的值扩大为原来的2倍.故选A.【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于的整式,分式的值不变.解题的关键是抓住分子,分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.4、B【分析】作DE⊥BC于E,根据三角形内角和定理求出∠C,根据直角三角形30°角的性质求出DE,根据角平分线的性质定理解答.【详解】解:作DE⊥BC于E,∠C=180°﹣∠CAB﹣∠ABC=30°,∴DE=CD=3,∵BD平分∠ABC,∠CAB=90°,DE⊥BC,∴AD=DE=3,故选:B.【点睛】本题考查的是角平分线的性质,直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5、C【解析】根据对称轴的定义,关键是找出对称轴即可得出答案.【详解】解:根据对称轴定义A、没有对称轴,所以错误B、没有对称轴,所以错误C、有一条对称轴,所以正确D、没有对称轴,所以错误故选C【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.6、A【分析】直接利用多边形内角和定理即可求解.【详解】解:设这个多边形的边数为n,则(n-2)×180°=n解得:n=7故选:A【点睛】本题主要考查多边形内角和定理,关键要掌握多边形内角和定理:n边形的内角和是(n-2)×180°(n≥3,且n为整数).7、B【分析】根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.【详解】解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;
乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;
丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;
所以与△ABC全等的有甲和丙,
故选:B.【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.8、C【分析】①根据AD⊥BC,若∠ABC=45°则∠BAD=45°,而∠BAC=45°,很明显不成立;
②③可以通过证明△AEH与△CEB全等得到;
④CE⊥AB,∠BAC=45°,所以是等腰直角三角形.【详解】①∵CE⊥AB,EH=EB,∴∠EBH=45°,∴∠ABC>45°,故①错误;∵CE⊥AB,∠BAC=45°,∴AE=EC,在△AEH和△CEB中,,∴△AEH≌△CEB(SAS),∴AH=BC,故选项②正确;又EC=EH+CH,∴AE=BE+CH,故选项③正确.∵AE=CE,CE⊥AB,所以△AEC是等腰直角三角形,故选项④正确.∴②③④正确.故选B.【点睛】本题主要利用全等三角形的对应边相等进行证明,找出相等的对应边后,注意线段之间的和差关系.9、C【解析】在,,0,-2这四个数中,有理数是,0,-2,无理数是.故选C.10、B【分析】根据折线统计图进行统计即可.【详解】根据统计图可得:小张老师这一周一天的步数超过7000步的有:星期一,星期六,共2天.故选:B【点睛】本题考查的是折线统计图,能从统计图中正确的读出信息是关键.11、D【分析】根据三角形的三边关系、三角形的外角性质、平行线的性质、平行公理判断即可.【详解】解:A、三角形的任意两边之和大于第三边,本选项说法是假命题;B、三角形的一个外角等于与它不相邻的两个内角的和,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、平行于同一条直线的两条直线平行,本选项说法是真命题;故选:D.【点睛】本题主要考查真假命题,掌握三角形的三边关系、三角形的外角性质、平行线的性质、平行公理是解题的关键.12、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项正确;
D、是轴对称图形,故本选项错误.
故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题(每题4分,共24分)13、±1【解析】分析:根据平方根的定义解答即可.详解:∵(±1)2=9,∴9的平方根是±1.故答案为±1.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14、(-2,-1)、(2,1)【解析】关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变点(-2,1)关于x轴对称的点的坐标是(-2,-1),点(-2,1)关于y轴对称的点的坐标是(2,1),15、【解析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AC=AB,AE=AD,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°,∴∠1=∠3,∵,∴△ACE∽△ABD,∴∠ACE=∠ABC=90°,∴点D从点B移动至点C的过程中,总有CE⊥AC,即点E运动的轨迹为过点C与AC垂直的线段,AB=AB=4,当点D运动到点C时,CE=AC=4,∴点E移动的路线长为4cm.16、相等的角是对顶角【分析】把一个命题的条件和结论互换就得到它的逆命题.【详解】:“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等,所以逆命题是:相等的角是对顶角.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.17、【分析】根据题意直接将x=2代入分式方程,即可求a的值.【详解】解:∵关于的方程的解为,∴将x=2代入分式方程有:,解得.故答案为:.【点睛】本题考查分式方程的解,熟练掌握分式方程的解与分式方程的关系并代入求值是解题的关键.18、11【分析】连接AD,交EF于点M,根据的垂直平分线是可知CM=AM,求周长的最小值及求CM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小.【详解】解:连接AD,交EF于点M,∵△ABC为等腰三角形,点为边的中点,底边长为∴AD⊥BC,CD=3又∵面积是24,即,∴AD=8,又∵的垂直平分线是,∴AM=CM,∴周长=CM+DM+CD=AM+DM+CD∴求周长最小值即求AM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小,周长=AD+CD=8+3=11最小.【点睛】本题考查了利用轴对称变换解决最短路径问题,解题的关键是找出对称点,确定最小值的位置.三、解答题(共78分)19、(1);(2)点M的坐标为(7,3)或(1,7)或(,);(3)OQ的最小值为1.【分析】(1)先求出A、B两点的坐标,根据勾股定理即可求出OE的长,然后利用AAS证出△ADO≌△OEB,即可求出AD的长;(2)先求出A、B两点的坐标,根据等腰直角三角形的直角顶点分类讨论,分别画出对应的图形,利用AAS证出对应的全等三角形即可分别求出点M的坐标;(3)根据k的取值范围分类讨论,分别画出对应的图形,设点A的坐标为(x,0),证出对应的全等三角形,利用勾股定理得出OQ2与x的函数关系式,利用平方的非负性从而求出OQ的最值.【详解】解:(1)根据题意可知:直线AB的解析式为y=-x+1当x=0时,y=1;当y=0时,x=1∴点A的坐标为(1,0)点B的坐标为(0,1)∴OA=BO=1根据勾股定理:OE=∵∠ADO=∠OEB=∠AOB=90°∴∠AOD+∠OAD=90°,∠AOD+∠BOE=90°∴∠OAD=∠BOE在△ADO和△OEB中∴△ADO≌△OEB∴AD=OE=(2)由题意可知:直线AB的解析式为y=x+1当x=0时,y=1;当y=0时,x=3∴点A的坐标为(3,0)点B的坐标为(0,1)∴OA=3,BO=1①当△ABM是以∠BAM为直角顶点的等腰直角三角形时,AM=AB,过点M作MN⊥x轴于N∵∠MNA=∠AOB=∠BAM=90°∴∠MAN+∠AMN=90°,∠MAN+∠BAO=90°∴∠AMN=∠BAO在△AMN和△BAO中∴△AMN≌△BAO∴AN=BO=1,MN=AO=3∴ON=OA+AN=7∴此时点M的坐标为(7,3);②当△ABM是以∠ABM为直角顶点的等腰直角三角形时,BM=AB,过点M作MN⊥y轴于N∵∠MNB=∠BOA=∠ABM=90°∴∠MBN+∠BMN=90°,∠MBN+∠ABO=90°∴∠BMN=∠ABO在△BMN和△ABO中∴△BMN≌△ABO∴BN=AO=3,MN=BO=1∴ON=OB+BN=7∴此时点M的坐标为(1,7);③当△ABM是以∠AMB为直角顶点的等腰直角三角形时,MA=MB,过点M作MN⊥x轴于N,MD⊥y轴于D,设点M的坐标为(x,y)∴MD=ON=x,MN=OD=y,∠MNA=∠MDB=∠BMA=∠DMN=90°∴BD=OB-OD=1-y,AN=ON-OA=x-3,∠AMN+∠DMA=90°,∠BMD+∠DMA=90°∴∠AMN=∠BMD在△AMN和△BMD中∴△AMN≌△BMD∴MN=MD,AN=BD∴x=y,x-3=1-y解得:x=y=∴此时M点的坐标为(,)综上所述:点M的坐标为(7,3)或(1,7)或(,).(3)①当k<0时,如图所示,过点Q作QN⊥y轴,设点A的坐标为(x,0)该直线与x轴交于正半轴,故x>0∴OB=1,OA=x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN+∠BQN=90°,∠QBN+∠ABO=90°∴∠BQN=∠ABO在△BQN和△ABO中∴△BQN≌△ABO∴QN=OB=1,BN=OA=x∴ON=OB+BN=1+x在Rt△OQN中,OQ2=ON2+QN2=(1+x)2+12=(x+1)2+16,其中x>0∴OQ2=(x+1)2+16>16②当k>0时,如图所示,过点Q作QN⊥y轴,设点A的坐标为(x,0)该直线与x轴交于负半轴,故x<0∴OB=1,OA=-x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN+∠BQN=90°,∠QBN+∠ABO=90°∴∠BQN=∠ABO在△BQN和△ABO中∴△BQN≌△ABO∴QN=OB=1,BN=OA=-x∴ON=OB-BN=1+x在Rt△OQN中,OQ2=ON2+QN2=(1+x)2+12=(x+1)2+16,其中x<0∴OQ2=(x+1)2+16≥16(当x=-1时,取等号)综上所述:OQ2的最小值为16∴OQ的最小值为1.【点睛】此题考查是一次函数与图形的综合大题,难度系数较大,掌握全等三角形的判定及性质、等腰三角形的性质、勾股定理、平方的非负性和分类讨论的数学思想是解决此题的关键.20、∠BDA=85°,∠F=35°.【分析】运用角平分线的定义可得∠CAD=∠CAB=15°,再由三角形外角的性质可得∠BDA的度数;再求出∠CBF的度数,利用△BDF的外角∠BDA可求得∠F的度数.【详解】∵AF平分∠BAC,∠BAC=30°,∴∠CAD=∠CAB=15°.∴∠BDA=∠C+∠CAD=85°.∵∠CBE=∠C+∠BAC=100°,BF平分∠CBE,∴∠CBF=∠CBE=50°.∴∠F=∠BDA-∠CBF=35°.【点睛】本题考查了三角形外角的性质及角平分线的性质,解题的关键是掌握外角和内角的关系.21、(1)m=5,n=5;(2)①见解析;②;(3)当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【分析】(1)利用非负数的性质即可解决问题.(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PQ=PE=OE+OP,得出结论;②作辅助线,构建平行四边形和全等三角形,可得平行四边形CSRE和平行四边形CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,问题得解;(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.【详解】解:(1)∵,∴n−5=0,5−m=0,∴m=5,n=5;(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,∵CN=OM=OC=MN,∠COM=90°,∴四边形OMNC是正方形,∴CO=CN,∵∠EOC=∠N=90°,∴△COE≌△CNQ(SAS),∴CQ=CE,∠ECO=∠QCN,∵∠PCQ=45°,∴∠QCN+∠OCP=90°−45°=45°,∴∠ECP=∠ECO+∠OCP=45°,∴∠ECP=∠PCQ,∵CP=CP,∴△ECP≌△QCP(SAS),∴EP=PQ,∵EP=EO+OP=NQ+OP,∴PQ=OP+NQ;②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得平行四边形CSRE,且△CEN≌△CE′O,则CE=SR,过C作CF∥GH交OM于F,连接FE,得平行四边形CFGH,则CF=GH=,∵∠SDG=135°,∴∠SDH=180°−135°=45°,∴∠FCE=∠SDH=45°,∴∠NCE+∠OCF=45°,∵△CEN≌△CE′O,∴∠E′CO=∠ECN,CE=CE′,∴∠E′CF=∠E′CO+∠OCF=45°,∴∠E′CF=∠FCE,∵CF=CF,∴△E′CF≌△ECF,∴E′F=EF在Rt△COF中,OC=5,FC=,由勾股定理得:OF=,∴FM=5−=,设EN=x,则EM=5−x,FE=E′F=x+,则(x+)2=()2+(5−x)2,解得:x=,∴EN=,由勾股定理得:CE=,∴SR=CE=;(3)当P、Q在移动过程中线段MN的长度不会发生变化.理由:如图3中,过P作PD∥OQ,交AF于D.∵OF=OA,∴∠OFA=∠OAF=∠PDF,∴PF=PD,∵PF=AQ,∴PD=AQ,∵PM⊥AF,∴DM=FD,∵PD∥OQ,∴∠DPN=∠PQA,∵∠PND=∠QNA,∴△PND≌△QNA,∴DN=AN,∴DN=AD,∴MN=DM+DN=DF+AD=AF,∵OF=OA=5,OC=3,∴CF=4,∴BF=BC−CF=5−4=1,∴AF=,∴MN=AF=,∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.【点睛】本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,非负数的性质以及勾股定理等;知识点较多,综合性强,第(2)问中的两个问题思路一致:在正方形外构建与△CNQ全等的三角形,可截取OE=NQ,也可以将△CNQ绕点C顺时针旋转90°得到,再证明另一对三角形全等,得出结论,是常考题型.22、(1)20°;(2)30°;(3)∠EDC=∠BAD,见解析【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【详解】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)由(2)得∠EDC与∠BAD的数量关系是∠EDC=∠BAD.【点睛】此题主要考查等腰三角形的性质证明,解题的关键是熟知等腰三角形的性质及三角形外角定理及内角和定理.23、(1)甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天;(2)乙工程队至少施工45天可以完成这个项目.【分析】(1)令工作总量为1,根据“甲队工作20天+乙队工作30天=”,列方程求解即可;(2)根据题意表示出甲、乙两队的施工天数,再根据不等关系:甲队施工总费用+乙队施工总费用≤114,列出不等式,求出范围即可解答.【详解】(1)设甲工程队单独完成这项工程需要天.依题意得:经检验为分式方程的解.(天)答:甲工程队单独完成这项工程需要60天,乙工程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度产业园企业入驻产业园区品牌形象设计合作协议4篇
- 2025年度产品陈列效果评估与市场反馈协议4篇
- 临时活动板房建设标准化协议样本版B版
- 个人信用担保协议:2024年专属贷款保障协议一
- 个人与健身俱乐部会员服务合同20245篇
- 2024艺术品买卖合同具体描述了书画作品的交易细节
- 2024版全新房屋买卖车位协议下载
- 2024施工员劳务聘用合同
- 2024版云端服务器购买协议范例版B版
- 2025年度产权明确车位租赁合同纠纷调解员服务合同4篇
- 电子教案-《交往与合作》(第一单元第二课+敲开人际关系的大门)-1
- 项目可行性研究报告评估咨询管理服务方案1
- 中金在线测评多少题
- PEP新人教版小学英语单词三到五年级
- 纳米复合材料增强金属基材
- 拆除猪场补偿协议书模板
- 水利水电工程施工安全管理导则
- 5岁幼儿数学练习题
- 2024年高中生物新教材同步选择性必修第三册学习笔记第3章 本章知识网络
- 2024年全国体育单招英语考卷和答案
- 食品安全管理制度可打印【7】
评论
0/150
提交评论