2024届安徽省宁国市宁阳学校八年级数学第一学期期末教学质量检测试题含解析_第1页
2024届安徽省宁国市宁阳学校八年级数学第一学期期末教学质量检测试题含解析_第2页
2024届安徽省宁国市宁阳学校八年级数学第一学期期末教学质量检测试题含解析_第3页
2024届安徽省宁国市宁阳学校八年级数学第一学期期末教学质量检测试题含解析_第4页
2024届安徽省宁国市宁阳学校八年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省宁国市宁阳学校八年级数学第一学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,△ABC中,∠C=90°,AD平分∠BAC,BC=10,BD=6,则点D到AB的距离是()A.4 B.5 C.6 D.72.如图,已知矩形一条直线将该矩形分割成两个多边形(含三角形),若这两个多边形的内角和分别为和则不可能是().A. B. C. D.3.以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4 B.5a²,6a²,10a²C.3a,4a,a D.a-1,a-2,3a-34.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL5.下列线段中不能组成三角形的是()A.2,2,1 B.2,3,5 C.3,3,3 D.4,3,56.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根 B.1根 C.2根 D.3根7.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①② B.①③ C.②③ D.②④8.如图,的角平分线与外角的平分线相交于点若则的度数是()A. B. C. D.9.下列从左到右的变形是分解因式的是()A. B.C. D.10.如图,下列各式中正确的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如下图,在△ABC中,∠B=90°,∠BAC=40°,AD=DC,则∠BCD的度数为______.12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,若(a﹣1)2+|b﹣|+=0,则这个三角形一定是_____.13.用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为2a+b的大长方形,需要B类卡片_____张.14.在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为_____.15.如图,在中,是的垂直平分线,且分别交于点和,,则等于_______度.16.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=)若设这种童鞋原来每双进价是x元,根据题意,可列方程为_________________________________________.17.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是________.18.当a=2018时,分式的值是_____.三、解答题(共66分)19.(10分)A,B两地相距80km,甲、乙两人骑车同时分别从A,B两地相向而行,假设他们都保持匀速行驶,则他们各自到A地的距离s(km)都是骑车时间t(h)的一次函数,如图所示.(1)求乙的s乙与t之间的解析式;(2)经过多长时间甲乙两人相距10km?20.(6分)问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点.如图1,四边形中,是一条对角线,,,则点与点关于互为顶针点;若再满足,则点与点关于互为勾股顶针点.初步思考(1)如图2,在中,,,、为外两点,,,为等边三角形.①点与点______关于互为顶针点;②点与点______关于互为勾股顶针点,并说明理由.实践操作(2)在长方形中,,.①如图3,点在边上,点在边上,请用圆规和无刻度的直尺作出点、,使得点与点关于互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点是直线上的动点,点是平面内一点,点与点关于互为勾股顶针点,直线与直线交于点.在点运动过程中,线段与线段的长度是否会相等?若相等,请直接写出的长;若不相等,请说明理由.21.(6分)如图,在△ABC中,AB=AC,∠BAC=90°,点P是BC上的一动点,AP=AQ,∠PAQ=90°,连接CQ.(1)求证:CQ⊥BC.(2)△ACQ能否是直角三角形?若能,请直接写出此时点P的位置;若不能,请说明理由.(3)当点P在BC上什么位置时,△ACQ是等腰三角形?请说明理由.22.(8分)某电话公司开设了两种手机通讯业务,甲种业务:使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;乙种业务:不交月租费,每通话1分钟,付话费0.6元(指市话).若一个月内通话x分钟,两种方式的费用分别为y1(元)和y2(元).(1)分别求出y1、y2与x之间的函数关系式.(2)根据每月可能的通话时间,作为消费者选用哪种缴费方式更实惠.23.(8分)如图,直角坐标系中,点是直线上第一象限内的点,点,以为边作等腰,点在轴上,且位于点的右边,直线交轴于点.(1)求点的坐标;(2)点向上平移个单位落在的内部(不包括边界),求的取值范围.24.(8分)已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.25.(10分)已知一个多边形的每一个内角都比它相邻的外角的3倍多20,求此多边形的边数.26.(10分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】作DE⊥AB于E,由角平分线的性质可得点D到AB的距离DE=CD,根据已知求得CD即可.【详解】解:作DE⊥AB于E.∵∠C=90°,AD平分∠BAC,∴DE=CD,∵BC=10,BD=6,∴CD=BC-BD=10-6=1,∴点D到AB的距离DE=1.故选:A.【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.2、D【解析】如图,一条直线将该矩形ABCD分割成两个多边(含三角形)的情况有以上三种,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D.3、B【分析】根据三角形的三边关系和a的取值范围逐一判断即可.【详解】解:A.(a+3)+(a+4)=2a+7,不能构成三角形,故本选项不符合题意;B.5a²+6a²>10a²,能构成三角形,故本选项符合题意;C.3a+a=4a,不能构成三角形,故本选项不符合题意;D.(a-1)+(a-2)=2a-3<2a-3+a=3a-3,不能构成三角形,故本选项不符合题意.故选B.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.4、B【分析】根据题中信息,得出角或边的关系,选择正确的证明三角形全等的判定定理,即可.【详解】由题意知:AB⊥BF,DE⊥BF,CD=BC,∴∠ABC=∠EDC在△EDC和△ABC中∴△EDC≌△ABC(ASA).故选B.【点睛】本题主要考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题的关键.5、B【分析】根据三角形的三边关系依次分析各项即可判断.【详解】A.,C.,D.,均能组成三角形,不符合题意;B.,不能组成三角形,符合题意,故选B.【点睛】本题考查的是三角形的三边关系,解答本题的关键是熟练掌握三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边.6、B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B7、A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.8、A【分析】根据角平分线的定义可得,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出,然后整理即可得到,代入数据计算即可得解.【详解】解:∵BE平分∠ABC,∴,∵CE平分△ABC的外角,∴在△BCE中,由三角形的外角性质,∴∴.故选A.【点睛】本题考查了三角形的外角性质的应用,能正确运用性质进行推理和计算是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.9、C【分析】考查因式分解的概念:把一个多项式分解成几个整式的积的形式.【详解】解:A.正确分解为:,所以错误;B.因式分解后为积的形式,所以错误;C.正确;D.等式左边就不是多项式,所以错误.【点睛】多项式分解后一定是几个整式相乘的形式,才能叫因式分解10、D【解析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.二、填空题(每小题3分,共24分)11、10°【分析】由余角的性质,得到∠ACB=50°,由AD=DC,得∠ACD=40°,即可求出∠BCD的度数.【详解】解:在△ABC中,∠B=90°,∠BAC=40°,∴∠ACB=50°,∵AD=DC,∴∠ACD=∠A=40°,∴∠BCD=50°40°=10°;故答案为:10°.【点睛】本题考查了等边对等角求角度,余角的性质解题的关键是熟练掌握等边对等角的性质和余角的性质进行解题.12、直角三角形【分析】依据偶数次幂,绝对值,二次根式的非负性求得a、b、c的值,然后依据勾股定理的逆定理进行判断即可.【详解】∵(a﹣1)2+|b﹣|+=0,∴a=1,b=,c=2,∴a2+c2=b2,∴△ABC为直角三角形.故答案为:直角三角形.【点睛】本题主要考查偶数次幂,绝对值,二次根式的非负性以及勾股定理的逆定理,掌握偶数次幂,绝对值,二次根式的非负性是解题的关键.13、1.【分析】先求出长为3a+2b,宽为2a+b的矩形面积,然后对照A、B、C三种卡片的面积,进行组合.【详解】解:长为3a+2b,宽为2a+b的矩形面积为(3a+2b)(2a+b)=6a2+1ab+2b2,A图形面积为a2,B图形面积为ab,C图形面积为b2,则可知需要A类卡片6张,B类卡片1张,C类卡片2张.故答案为:1.【点睛】本题主要考查多项式乘法的应用,正确的计算多项式乘法是解题的关键.14、7.7×10﹣1【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.00077=7.7×10-1,故答案为7.7×10-1.点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、20【分析】先根据三角形的内角和求出∠ABC的度数,再根据是的垂直平分线得出AE=BE,从而得出∠ABE=∠A=50°,再计算∠EBC即可.【详解】∵,∴∠ABC=180°-∠A-∠C=70°,∵是的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∴∠EBC=70°-50°=20°.故答案为20.【点睛】本题考查三角形的内角和定理和线段垂直平分线的性质,根据是的垂直平分线得出AE=BE是解题的关键.16、【分析】由等量关系为利润=售价-进价,利润率=%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得;故答案为:.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.17、3【解析】如图,过点D作DF⊥AB于点F,∵DE⊥AC于点E,∴S△ADC=ACDE=6,即:DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.18、1【分析】首先化简分式,然后把a=2018代入化简后的算式,求出算式的值是多少即可.【详解】当a=2018时,,=,=,=,=a+1,=2018+1,=1.故答案为1.【点睛】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.三、解答题(共66分)19、(1)s乙=﹣20t+80;(2)t=2或.【分析】(1)s乙与t之间的解析式为:y=kt+80,将点(1,60)代入上式并解得:k=−20,即可求解;

(2)由题意得:s甲−s乙=±10,即可求解.【详解】解:(1)s乙与t之间的解析式为:y=kt+80,将点(1,60)代入上式并解得:k=﹣20,故s乙与t之间的解析式为:y=﹣20t+80;(2)同理s甲与t之间的解析式为:y=15t,由题意得:s甲﹣s乙=±10,即﹣20t+80﹣15t=±10,解得:t=2或.【点睛】此题为一次函数的应用,渗透了函数与方程的思想,重点是求乙的k值.20、(1)①、,②,理由见解析;(2)①作图见解析;②与可能相等,的长度分别为,,2或1.【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.

(2)①以C为圆心,CB为半径画弧交AD于F,连接CF,作∠BCF的角平分线交AB于E,点E,点F即为所求.

②分四种情形:如图①中,当时;如图②中,当时;如图③中,当时,此时点F与D重合;如图④中,当时,点F与点D重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:

①点A与点D和E关于BC互为顶针点;

②点D与点A关于BC互为勾股顶针点,理由:如图2中,∵△BDC是等边三角形,

∴∠D=60°,

∵AB=AC,∠ABC=30°,

∴∠ABC=∠ACB=30°,

∴∠BAC=120°,

∴∠A+∠D=10°,

∴点D与点A关于BC互为勾股顶针点,

故答案为:D和E,A.(2)①如图,点、即为所求(本质就是点关于的对称点为,相当于折叠).②与可能相等,情况如下:情况一:如图①,由上一问易知,,当时,设,连接,∵,∴,∴,在中,,,∴,解得,即;情况二:如图②当时,设,同法可得,则,,则,,在中,则有,解得:;情况三:如图③,当时,此时点与重合,可得;情况四:如图④,当时,此时点与重合,可得.综上所述,与可能相等,的长度分别为,,2或1.【点睛】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.21、(1)证明见解析;(2)点P为BC的中点或与点C重合时,△ACQ是直角三角形;(3)当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.【分析】(1)根据同角的余角相等求出∠BAP=∠CAQ,然后利用“边角边”证明△ABP和△ACQ全等,根据全等三角形对应角相等可得∠ACQ=∠B,再根据等腰直角三角形的性质得到∠B=∠ACB=45°,然后求出∠BCQ=90°,然后根据垂直的定义证明即可;

(2)分∠APB和∠BAP是直角两种情况求出点P的位置,再根据△ABP和△ACQ全等解答;

(3)分BP=AB,AB=AP,AP=BP三种情况讨论求出点P的位置,再根据△ABP和△ACQ全等解答.【详解】解:(1)∵∠BAP+∠CAP=∠BAC=90°,∠CAQ+∠CAP=∠PAQ=90°,∴∠BAP=∠CAQ,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCQ=∠ACB+∠ACQ=45°+45°=90°,∴CQ⊥BC;(2)当点P为BC的中点或与点C重合时,△ACQ是直角三角形;(3)①当BP=AB时,△ABP是等腰三角形;②当AB=AP时,点P与点C重合;③当AP=BP时,点P为BC的中点;∵△ABP≌△ACQ,∴当点P为BC的中点或与点C重合或BP=AB时,△ACQ是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的性质,求出△ABP和△ACQ全等是解题的关键,难点在于(2)(3)要分情况讨论.22、(1)、y1=50+0.4x,y2=0.6x;(2)、当通话时间小于250分钟时,选择乙种通信业务更优惠;当通话时间等于250分钟时,选择两种通信业务一样;当通话时间大于250分钟时,选择甲种通信业务更优惠.【分析】(1)根据两种费用的缴费方式分别列式计算即可得解;(2)先写出两种缴费方式的函数关系式,再分情况列出不等式然后求解即可.【详解】解:(1)由题意可知:y1=50+0.4x,y2=0.6x;(2)y1=50+0.4x,y2=0.6x,当y1>y2即50+0.4x>0.6x时,x<250,当y1=y2即50+0.4x=0.6x时,x=250,当y1<y2即50+0.4x<0.6x时,x>250,所以,当通话时间小于250分钟时,选择乙种通信业务更优惠,当通话时间等于250分钟时,选择两种通信业务一样,当通话时间大于250分钟时,选择甲种通信业务更优惠.考点:一次函数的应用.23、(1);(2)【分析】(1)根据题意,设点,由等腰直角三角形的性质进行求解即可得解;(2)过作轴的垂线交直线于点,交直线于,分别以A点在直线OC和直线CD上为临界条件进行求解即可的到m的值.【详解】(1)设点过点作轴,交点为由题意得为等腰直角三角形∵轴∴∵点在点的右边∴,解得∴,;(2)∵,∴直线的解析式为如下图,过作轴的垂线交直线于点,交直线于∵∴解得的坐标为,Q的坐标为∴.【点睛】本题属于一次函数的综合题,包含等腰直角三角形的性质等相关知识点,熟练掌握一次函数综合题的解决技巧是解决本题的关键.24、见解析【分析】作OD⊥AB,OE⊥AC,垂足分别为D、E,根据角平分线的性质可得OD=OE,然后根据等角对等边证出OB=OC,然后利用HL证出Rt△ODB≌Rt△OEC,可得∠ABO=∠ACO,再利用等角对等边证出AB=AC,最后根据三线合一即可证出结论.【详解】解:作OD⊥AB,OE⊥AC,垂足分别为D、E∵AO平分BAC,∴OD=OE∵∠1=∠1∴OB=OC在Rt△ODB和Rt△OEC中∴Rt△ODB≌Rt△OEC∴∠ABO=∠ACO又∵∠1=∠1∴∠ABC=∠ACB∴AB=AC∵AO平分∠BAC∴AO⊥BC【点睛】此题考查的是角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质,掌握角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质是解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论