版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年枣庄市重点名校中考数学猜题卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x﹣2﹣1012y830﹣10则抛物线的顶点坐标是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)2.下列运算正确的是()A.2+a=3 B.=C. D.=3.若x﹣2y+1=0,则2x÷4y×8等于()A.1 B.4 C.8 D.﹣164.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=25.若关于x的不等式组无解,则m的取值范围()A.m>3 B.m<3 C.m≤3 D.m≥36.下列交通标志是中心对称图形的为()A. B. C. D.7.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是().A. B. C. D.8.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2 B.27cm2 C.21cm2 D.20cm29.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为()A.8cm B.4cm C.4cm D.5cm10.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100° B.105° C.110° D.115°二、填空题(本大题共6个小题,每小题3分,共18分)11.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).12.如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.13.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.14.不等式的解集是________________15.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.16.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.三、解答题(共8题,共72分)17.(8分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?18.(8分)如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.19.(8分)(1)如图1,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB;(2)如图2,AB是⊙O的直径,PA与⊙O相切于点A,OP与⊙O相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.20.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?21.(8分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.22.(10分)化简:.23.(12分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.24.如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE=时,直接写出△CDP与△BDP面积比.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.详解:当或时,,当时,,,解得,二次函数解析式为,抛物线的顶点坐标为,故选C.点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.2、D【解题分析】
根据整式的混合运算计算得到结果,即可作出判断.【题目详解】A、2与a不是同类项,不能合并,不符合题意;B、=,不符合题意;C、原式=,不符合题意;D、=,符合题意,故选D.【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3、B【解题分析】
先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.【题目详解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故选:B.【题目点拨】本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.4、A【解题分析】
直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【题目详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【题目点拨】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.5、C【解题分析】
根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.【题目详解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式组无解,∴2+m≥2m﹣1,∴m≤3,故选C.【题目点拨】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.6、C【解题分析】
根据中心对称图形的定义即可解答.【题目详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.【题目点拨】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7、D【解题分析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:∵,..又∵过点,交于点,∴,∴,∴.故选D.8、B【解题分析】
根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.【题目详解】解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.5×6=17cm1.【题目点拨】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.9、C【解题分析】
连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【题目详解】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴故选:C.【题目点拨】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.10、B【解题分析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【题目详解】∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.【题目点拨】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.二、填空题(本大题共6个小题,每小题3分,共18分)11、4n﹣1【解题分析】
分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形.【题目详解】分别数出图、图、图中的三角形的个数,图中三角形的个数为;图中三角形的个数为;图中三角形的个数为;可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为.故答案为.【题目点拨】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.12、-6【解题分析】如图,作AC⊥x轴,BD⊥x轴,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,设A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.13、1.【解题分析】
根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.【题目详解】解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.故答案为1.【题目点拨】本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14、【解题分析】
首先去分母进而解出不等式即可.【题目详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【题目点拨】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15、①③⑤【解题分析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.【题目详解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此选项成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
=
=
,
∴BF=EF=
,
故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
,
又∵PB=
,
∴BE=
,
∵△APD≌△AEB,
∴PD=BE=
,
∴S
△ABP+S
△ADP=S
△ABD-S
△BDP=
S
正方形ABCD-
×DP×BE=
×(4+
)-
×
×
=
+
.
故此选项不正确.
⑤∵EF=BF=
,AE=1,
∴在Rt△ABF中,AB
2=(AE+EF)
2+BF
2=4+
,
∴S
正方形ABCD=AB
2=4+
,
故此选项正确.
故答案为①③⑤.【题目点拨】本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.16、1a1.【解题分析】
结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.【题目详解】阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1.故答案为:1a1.【题目点拨】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.三、解答题(共8题,共72分)17、从甲班抽调了35人,从乙班抽调了1人【解题分析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,由题意得,45﹣x=2[39﹣(x﹣1)],解得:x=35,则x﹣1=35﹣1=1.答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.18、(1)sinB=;(2)DE=1.【解题分析】
(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=计算即可;(2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解决问题;【题目详解】(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB==3,∴sinB==.(2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE==1.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.19、(1)证明见解析;(2)25°.【解题分析】试题分析:(1)根据等量代换可求得∠AOD=∠BOC,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC,根据三角形全等的判定AAS证得△AOD≌△BOC,从而得证结论.(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA的度数,然后利用圆周角定理来求∠ABC的度数.试题解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四边形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直径,PA与相切于点A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB,∴.20、(1);(2)20分钟.【解题分析】
(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.21、(1)CD与圆O的位置关系是相切,理由详见解析;(2)AD=.【解题分析】
(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【题目详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O的位置关系是相切;(2)连接BC,∵AB是⊙O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年猎头服务定制合同
- 2024年主题公园招商合同范本3篇
- 2024年学生托管服务与心理咨询服务合作协议3篇
- 餐厅年度工作计划11篇
- 安防风险评估报告
- 政治教师工作计划
- 英文感谢信模板锦集10篇
- 幼儿园安全教育心得体会
- 大学个人学习规划范文7篇
- 城南旧事的观后感350字
- (八省联考)河南省2025年高考综合改革适应性演练 生物试卷(含答案)
- 人工智能销售工作总结
- 工商注册租房合同范例
- 2023-2024学年广东省深圳市罗湖区八年级上学期期末生物试题
- GB/T 18281.3-2024医疗保健产品灭菌生物指示物第3部分:湿热灭菌用生物指示物
- 2025年医院保卫科工作总结及2025年工作计划
- 班会课件高中
- 《设计实训2》课程教学大纲
- 部编版一年级上册语文第一单元-作业设计
- 安全生产泄漏课件
- 陕西省西安市高新第一中学2023-2024学年八年级上学期期末历史试题
评论
0/150
提交评论