版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东广饶县2024年中考联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数 B.中位数 C.众数 D.方差2.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.43.tan45°的值等于()A. B. C. D.14.点是一次函数图象上一点,若点在第一象限,则的取值范围是().A. B. C. D.5.如果,那么代数式的值是()A.6 B.2 C.-2 D.-66.估计5﹣的值应在()A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间7.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m8.下列各数中负数是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)39.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.5 B.10 C.10 D.1510.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_____.12.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班乙班数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:这次数学测试成绩中,甲、乙两个班的平均水平相同;甲班学生中数学成绩95分及以上的人数少;乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是______填序号13.如图,直线经过、两点,则不等式的解集为_______.14.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.15.若分式a2-9a+316.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.三、解答题(共8题,共72分)17.(8分)计算:2sin30°﹣|1﹣|+()﹣118.(8分)解不等式组,并把它的解集表示在数轴上.19.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?20.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?22.(10分)如图,AB是⊙O的直径,点C在⊙O上,CE^AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.23.(12分)在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);请在图中的网格平面内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.24.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【题目详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【题目点拨】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。2、D【解题分析】
①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.∴S△ABC=AC•BC=AC•AD=AC•AD.∴S△DAC:S△ABC.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D.3、D【解题分析】
根据特殊角三角函数值,可得答案.【题目详解】解:tan45°=1,故选D.【题目点拨】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4、B【解题分析】试题解析:把点代入一次函数得,.∵点在第一象限上,∴,可得,因此,即,故选B.5、A【解题分析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【题目详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【题目点拨】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.6、C【解题分析】
先化简二次根式,合并后,再根据无理数的估计解答即可.【题目详解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值应在7和8之间,故选C.【题目点拨】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.7、C【解题分析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB=MN=CM﹣CN,即可得到结论.【题目详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故选C.【题目点拨】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.8、B【解题分析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.【题目详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数.故选B.【题目点拨】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.9、B【解题分析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G=,∴C四边形EFGH=2E′G=10,故选B.【题目点拨】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.10、A【解题分析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可.设某种书包原价每个x元,可得:0.8x﹣10=90考点:由实际问题抽象出一元一次方程.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】如图,有5种不同取法;故概率为.12、【解题分析】
根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.【题目详解】解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,∴这次数学测试成绩中,甲、乙两个班的平均水平相同;故正确;∵甲班的中位数是95.5分,乙班的中位数是90.5分,甲班学生中数学成绩95分及以上的人数多,故错误;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班学生的数学成绩比较整齐,分化较小;故正确;上述评估中,正确的是;故答案为:.【题目点拨】本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.13、-1<X<2【解题分析】经过点A,∴不等式x>kx+b>-2的解集为.14、1【解题分析】
根据概率的公式进行计算即可.【题目详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是15故答案为:15【题目点拨】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.15、1.【解题分析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式a2∴a2解得a=1.考点:分式的值为零的条件.16、【解题分析】当k−1=0,即k=1时,原方程为−4x−5=0,解得:x=−,∴k=1符合题意;当k−1≠0,即k≠1时,有,解得:k⩾且k≠1.综上可得:k的取值范围为k⩾.故答案为k⩾.三、解答题(共8题,共72分)17、4﹣【解题分析】
原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.【题目详解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【题目点拨】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.18、不等式组的解是x≥3;图见解析【解题分析】
先求出每个不等式的解集,再求出不等式组的解集即可.【题目详解】解:∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式组的解是x≥3,在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.19、100或200【解题分析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,列方程得,(8+×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.考点:一元二次方程的应用.20、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解题分析】
(1)根据题意,本次接受调查的学生总人数为各个金额人数之和,用总概率减去其他金额的概率即可求得m值.(2)平均数为一组数据中所有数据之和再除以这组数据的个数;众数是在一组数据中出现次数最多的数;中位数是将一组数据按大小顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数,据此求解即可.(3)根据样本估计总体,用“每天在校体育锻炼时间大于等于1.5h的人数”的概率乘以全校总人数求解即可.【题目详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【题目点拨】本题主要考查数据的收集、处理以及统计图表.21、(1)12;(2)【解题分析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是12(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)证明见解析;(2)1.【解题分析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得CE试题解析:(1)证明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考点:切线的判定,相似三角形,勾股定理23、(1)(2)见解析;(3)P(0,2).【解题分析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.24、(1)10;(2).【解题分析】
(1)先证出∠C=∠D=90°,再根据∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东理工学院《畜牧机械》2023-2024学年第一学期期末试卷
- 广东科技学院《谱学导论》2023-2024学年第一学期期末试卷
- 广东江门幼儿师范高等专科学校《藏药材栽培学》2023-2024学年第一学期期末试卷
- 广东行政职业学院《人力资源综合实训》2023-2024学年第一学期期末试卷
- 广东工程职业技术学院《创意传播管理》2023-2024学年第一学期期末试卷
- 广东第二师范学院《Photoshop图像处理》2023-2024学年第一学期期末试卷
- 《高效绩团队》课件
- 广安职业技术学院《房地产开发》2023-2024学年第一学期期末试卷
- 赣州职业技术学院《翻译概论》2023-2024学年第一学期期末试卷
- 保洁消防培训课件
- 运筹学(课件)
- 胶囊剂生产工艺流程图
- 肝胆外科出科考试试卷
- 制药厂安全事故应急救援预案汇编
- 塔吊运行作业方案
- 上市公司信息披露制度的跨国比较及借鉴
- 重庆中考数学最新26题练习及答案
- 飞机起落架缓冲器的设计航空专业
- 江苏卫视跨年演唱会电视转播技术方案-209年精选文档
- 石化公司装置管道无损检测施工方案A0
- 水电工程施工机械台时费定额(2004年版)
评论
0/150
提交评论