成都十八中学2024届中考数学全真模拟试题含解析_第1页
成都十八中学2024届中考数学全真模拟试题含解析_第2页
成都十八中学2024届中考数学全真模拟试题含解析_第3页
成都十八中学2024届中考数学全真模拟试题含解析_第4页
成都十八中学2024届中考数学全真模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成都十八中学2024年中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.下列图形中,主视图为①的是()A. B. C. D.2.a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A.a<b<0 B.b<a<0 C.a<0<b D.b<0<a3.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB4.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S25.下列图形中,线段MN的长度表示点M到直线l的距离的是()A. B. C. D.6.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位 B.将l1向右平移2个单位C.将l1向上平移2个单位 D.将l1向下平移2个单位7.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()A.180人B.117人C.215人D.257人8.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<09.下列手机手势解锁图案中,是轴对称图形的是()A. B. C. D.10.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A.50m B.25m C.(50﹣)m D.(50﹣25)m二、填空题(本大题共6个小题,每小题3分,共18分)11.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.12.分解因式:2x3﹣4x2+2x=_____.13.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.14.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.15.不等式组的解集为____.16.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.三、解答题(共8题,共72分)17.(8分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.求AD的长;求证:FC是的切线.18.(8分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.19.(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.该同学从5个项目中任选一个,恰好是田赛项目的概率为______;该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.20.(8分)如图,在Rt△ABC中,,CD⊥AB于点D,BE⊥AB于点B,BE=CD,连接CE,DE.(1)求证:四边形CDBE为矩形;(2)若AC=2,,求DE的长.21.(8分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.22.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.23.(12分)先化简,再求值:,其中a是方程a(a+1)=0的解.24.有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x0+1整除,再依次轮换个位数字得到的新数能被x0+2整除,按此规律轮换后,能被x0+3整除,…,能被x0+n﹣1整除,则称这个n位数是x0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.2、A【解题分析】解:∵,∴反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数的图象上,∴a<b<0,故选A.3、C【解题分析】

根据线段上的等量关系逐一判断即可.【题目详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【题目点拨】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.4、D【解题分析】

根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.【题目详解】∵如图,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即时,,此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小,故选项A不符合题意,选项B不符合题意.若1AD<AB,即时,,此时3S1<S1+S△BDE<1S1,故选项C不符合题意,选项D符合题意.故选D.【题目点拨】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.5、A【解题分析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.6、C【解题分析】

根据“上加下减”的原则求解即可.【题目详解】将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.故选:C.【题目点拨】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.7、B【解题分析】

设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【题目详解】设男生为x人,则女生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【题目点拨】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.8、A【解题分析】

解:∵二次函数的图象开口向上,∴a>1.∵对称轴在y轴的左边,∴<1.∴b>1.∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,∵b>1,∴b=2﹣a>1.∴a<2.∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.故选A.【题目点拨】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.9、D【解题分析】

根据轴对称图形与中心对称图形的定义进行判断.【题目详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【题目点拨】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.10、C【解题分析】

如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB=MN=CM﹣CN,即可得到结论.【题目详解】如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).则AB=MN=(50﹣)m.故选C.【题目点拨】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】

解:根据题意可得:列表如下红1红2黄1黄2黄3红1红1,红2红1,黄1红1,黄2红1,黄3红2红2,红1红2,黄1红2,黄2红2,黄3黄1黄1,红1黄1,红2黄1,黄2黄1,黄3黄2黄2,红1黄2,红2黄2,黄1黄2,黄3黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为.【题目点拨】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.12、2x(x-1)2【解题分析】2x3﹣4x2+2x=13、2【解题分析】

根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【题目详解】由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案为2.【题目点拨】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14、【解题分析】

过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.【题目详解】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴.故答案为:.【题目点拨】此题考查解直角三角形的应用,解题的关键在于做辅助线.15、x>1【解题分析】

分别解出两不等式的解集再求其公共解.【题目详解】由①得:x>1

由②得:x>∴不等式组的解集是x>1.【题目点拨】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.16、【解题分析】

设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【题目详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的长=π,∴2πr=π,∴r=(cm).故答案为.【题目点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.三、解答题(共8题,共72分)17、(1);(2)证明见解析.【解题分析】

(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.【题目详解】证明:连接OD,是的直径,,,设,,,在中,,,解得:,,,,在中,;连接OF、OC,是切线,,,,,四边形FADC是平行四边形,,平行四边形FADC是菱形,,,,,即,即,点C在上,是的切线.【题目点拨】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.18、(1);(2)【解题分析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【题目详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k>0,b>0,又因为取情况:kb1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【题目点拨】本题考核知识点:求规概率.解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出.19、(1);(2).【解题分析】

(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【题目详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:.故答案为;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:.【题目点拨】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)见解析;(2)1【解题分析】

分析:(1)根据平行四边形的判定与矩形的判定证明即可;(2)根据矩形的性质和三角函数解答即可.详解:(1)证明:∵CD⊥AB于点D,BE⊥AB于点B,∴.∴CD∥BE.又∵BE=CD,∴四边形CDBE为平行四边形.又∵,∴四边形CDBE为矩形.(2)解:∵四边形CDBE为矩形,∴DE=BC.∵在Rt△ABC中,,CD⊥AB,可得.∵,∴.∵在Rt△ABC中,,AC=2,,∴.∴DE=BC=1.点睛:本题考查了矩形的判定与性质,关键是根据平行四边形的判定与矩形的判定解答.21、,.【解题分析】

先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【题目详解】解:原式当时原式【题目点拨】考查分式的混合运算,掌握运算顺序是解题的关键.22、(1)见解析;(2)见解析;【解题分析】

(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【题目详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.23、【解题分析】

根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【题目详解】解:原式==∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,∴a=-1,将a=-1代入得,原式=【题目点拨】本题考查了分式的化简求值,中等难度,根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论