![2024届内蒙古包头市东河区重点名校中考数学五模试卷含解析_第1页](http://file4.renrendoc.com/view10/M02/26/1E/wKhkGWWB2jyAUVOhAAGKsKeRVek361.jpg)
![2024届内蒙古包头市东河区重点名校中考数学五模试卷含解析_第2页](http://file4.renrendoc.com/view10/M02/26/1E/wKhkGWWB2jyAUVOhAAGKsKeRVek3612.jpg)
![2024届内蒙古包头市东河区重点名校中考数学五模试卷含解析_第3页](http://file4.renrendoc.com/view10/M02/26/1E/wKhkGWWB2jyAUVOhAAGKsKeRVek3613.jpg)
![2024届内蒙古包头市东河区重点名校中考数学五模试卷含解析_第4页](http://file4.renrendoc.com/view10/M02/26/1E/wKhkGWWB2jyAUVOhAAGKsKeRVek3614.jpg)
![2024届内蒙古包头市东河区重点名校中考数学五模试卷含解析_第5页](http://file4.renrendoc.com/view10/M02/26/1E/wKhkGWWB2jyAUVOhAAGKsKeRVek3615.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古包头市东河区重点名校中考数学五模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的几何体的左视图是()A. B. C. D.2.下列各式计算正确的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b23.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B.C. D.4.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣25.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C. D.6.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数 B.众数 C.中位数 D.方差7.计算的值为()A. B.-4 C. D.-28.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有()A.3对 B.4对 C.5对 D.6对9.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为()kg.A.180 B.200 C.240 D.30010.下列各类数中,与数轴上的点存在一一对应关系的是()A.有理数B.实数C.分数D.整数11.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cm B.20cm C.10πcm D.20πcm12.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A.20、20 B.30、20 C.30、30 D.20、30二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.14.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.15.已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为______,此函数的最大值是____,最小值是______.16.因式分解:x3﹣4x=_____.17.计算:(a2)2=_____.18.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.20.(6分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.(1)求反比例函数和一次函数的解析式;(2)请连结,并求出的面积;(3)直接写出当时,的解集.21.(6分)解方程:-=122.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)23.(8分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?24.(10分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求△AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是.25.(10分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sin∠ACD=,求四边形ABCD的面积.26.(12分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.(1)观察猜想:图1中,PM与PN的数量关系是,位置关系是.(2)探究证明:将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;(3)拓展延伸:把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.27.(12分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=,cos75°=,tan75°=)
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.2、C【解题分析】
根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【题目详解】A.a+3a=4a,故不正确;B.(–a2)3=(-a)6,故不正确;C.a3·a4=a7,故正确;D.(a+b)2=a2+2ab+b2,故不正确;故选C.【题目点拨】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.3、A【解题分析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4、C【解题分析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【题目详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故选C.【题目点拨】考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5、C【解题分析】
根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【题目详解】∵△ABC为等边三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【题目点拨】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.6、D【解题分析】A.∵原平均数是:(1+2+3+3+4+1)÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3)÷7=3;∴平均数不发生变化.B.∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C.∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D.∵原方差是:;添加一个数据3后的方差是:;∴方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.7、C【解题分析】
根据二次根式的运算法则即可求出答案.【题目详解】原式=-3=-2,故选C.【题目点拨】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.8、D【解题分析】
根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.【题目详解】图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故选D.【题目点拨】此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.9、B【解题分析】
根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.【题目详解】解:设小李所进甜瓜的数量为,根据题意得:,解得:,经检验是原方程的解.答:小李所进甜瓜的数量为200kg.故选:B.【题目点拨】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.10、B【解题分析】
根据实数与数轴上的点存在一一对应关系解答.【题目详解】实数与数轴上的点存在一一对应关系,故选:B.【题目点拨】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.11、A【解题分析】试题解析:扇形的弧长为:=20πcm,∴圆锥底面半径为20π÷2π=10cm,故选A.考点:圆锥的计算.12、C【解题分析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解题分析】
解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵当x=a时,,∴P1的坐标为(a,),当x=2a时,,∴P2的坐标为(2a,),……∴Rt△P1B1P2的面积为,Rt△P2B2P3的面积为,Rt△P3B3P4的面积为,……∴Rt△Pn-1Bn-1Pn的面积为.故答案为:14、【解题分析】
列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【题目详解】如图:共有12种情况,在第三象限的情况数有2种,
故不再第三象限的共10种,
不在第三象限的概率为,
故答案为.【题目点拨】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.15、x2+x+20(0<x<10)不存在.【解题分析】
先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求从而有(0<x<10),再根据二次函数的性质,可求函数的最大值.【题目详解】如图所示,连接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,没有最小值,∴y最大值=故答案为(0<x<10),,不存在.【题目点拨】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.16、x(x+2)(x﹣2)【解题分析】试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.17、a1.【解题分析】
根据幂的乘方法则进行计算即可.【题目详解】故答案为【题目点拨】考查幂的乘方,掌握运算法则是解题的关键.18、1【解题分析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2).【解题分析】
(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【题目详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积20、(1),;(2)4;(3).【解题分析】
(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
(2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
(3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.【题目详解】解:(1)如图,连接,,∵⊙C与轴,轴相切于点D,,且半径为,,,∴四边形是正方形,,,点,把点代入反比例函数中,解得:,∴反比例函数解析式为:,∵点在反比例函数上,把代入中,可得,,把点和分别代入一次函数中,得出:,解得:,∴一次函数的表达式为:;(2)如图,连接,,点的横坐标为,的面积为:;(3)由,根据图象可知:当时,的解集为:.【题目点拨】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.21、【解题分析】【分析】先去分母,把分式方程化为一元一次方程,解一元一次方程,再验根.【题目详解】解:去分母得:解得:检验:把代入所以:方程的解为【题目点拨】本题考核知识点:解方式方程.解题关键点:去分母,得到一元一次方程,.验根是要点.22、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.【解题分析】
(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD,CB的长,进而求出现在从A地到达B地可比原来少走的路程.【题目详解】解:(1)作CH⊥AB于点H,如图所示,∵BC=12km,∠B=30°,∴km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DM⊥AB于点M,如图所示,∵桥DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,即现在从A地到达B地可比原来少走的路程是4.1km.【题目点拨】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.23、每台电脑0.5万元;每台电子白板1.5万元.【解题分析】
先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.【题目详解】设每台电脑x万元,每台电子白板y万元.根据题意,得:解得,答:每台电脑0.5万元,每台电子白板1.5万元.【题目点拨】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.24、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;【解题分析】
(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
(1)根据A、B的横坐标结合图象即可得出答案.【题目详解】解:(1)过A作AM⊥x轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标是(1,1),把A的坐标代入y=得:k=1,即反比例函数的解析式是y=.把B(﹣2,n)代入反比例函数的解析式得:n=﹣,即B的坐标是(﹣2,﹣),把A、B的坐标代入y=ax+b得:,解得:k=.b=﹣,即一次函数的解析式是y=x﹣.(2)连接OB,∵y=x﹣,∴当x=0时,y=﹣,即OD=,∴△AOB的面积是S△BOD+S△AOD=××2+××1=.(1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,故答案为﹣2<x<0或x>1.【题目点拨】本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.25、(1)证明见解析;(2)S平行四边形ABCD=3.【解题分析】试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;(2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积.试题解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等边三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四边形ABCD=2S△ACD=AC•DE=3.26、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)【解题分析】
(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;【题目详解】解:(1)PM=PN,PM⊥PN,理由如下:延长AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如图②中,设AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴当BD的值最大时,PM的值最大,△PMN的面积最大,∴当B、C、D共线时,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面积的最大值=×3×3=.【题目点拨】本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.27、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解题分析】
(1)如图1中,当点E在BC上时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保行业采购工作经验分享
- 2025-2030全球镀镍服务行业调研及趋势分析报告
- 2025-2030全球液密柔性非金属导管行业调研及趋势分析报告
- 2025-2030全球水电解用全氟磺酸膜行业调研及趋势分析报告
- 2025年全球及中国半自动焊接机行业头部企业市场占有率及排名调研报告
- 2025年全球及中国癸二酸二酰肼行业头部企业市场占有率及排名调研报告
- 2025-2030全球小尺寸工业平板电脑行业调研及趋势分析报告
- 2025年全球及中国二氧化碳捕获机行业头部企业市场占有率及排名调研报告
- 2025年全球及中国叉车机器人行业头部企业市场占有率及排名调研报告
- 2025-2030全球制药用乙酰氯行业调研及趋势分析报告
- 2024年河南省公务员录用考试《行测》真题及答案解析
- 私密品牌年度规划
- 2023年上海铁路局集团有限公司招聘笔试真题
- 贵州省贵阳市2023-2024学年高一上学期期末考试 物理 含解析
- 信永中和在线测评85题
- 2024至2030年中国中水回用行业发展监测及投资战略规划报告
- 《软件培训讲义》课件
- 行政单位闲置资产清查盘活工作总结
- 设计单位-质量管理体系
- 2024版《供电营业规则》学习考试题库500题(含答案)
- 福建省医院大全
评论
0/150
提交评论