![北航数值分析B第二次上机作业算法实现_第1页](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWA6yOALO2vAAE7xRTPs7k282.jpg)
![北航数值分析B第二次上机作业算法实现_第2页](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWA6yOALO2vAAE7xRTPs7k2822.jpg)
![北航数值分析B第二次上机作业算法实现_第3页](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWA6yOALO2vAAE7xRTPs7k2823.jpg)
![北航数值分析B第二次上机作业算法实现_第4页](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWA6yOALO2vAAE7xRTPs7k2824.jpg)
![北航数值分析B第二次上机作业算法实现_第5页](http://file4.renrendoc.com/view11/M03/37/2C/wKhkGWWA6yOALO2vAAE7xRTPs7k2825.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数值分析B第二次上机作业课后题第8题关于x,y,t,u,v,w的方程组(A.3)(A.3)以及关于z,t,u的二维数表(见表A-1)确定了一个二元函数z=f(x,y)。表A-1二维数表tzu00.40.81.21.620-0.5-0.340.140.942.063.50.2-0.42-0.5-0.260.31.182.380.4-0.18-0.5-0.5-0.180.461.420.60.22-0.34-0.58-0.5-0.10.620.80.78-0.02-0.5-0.66-0.5-0.021.01.50.46-0.26-0.66-0.74-0.5试用数值方法求出f(x,y)在区域上的近似表达式要求p(x,y)以最小的k值达到以下的精度其中。计算(i=1,2,…,8;j=1,2,…,5)的值,以观察p(x,y)逼近f(x,y)的效果,其中。算法设计:1.题目要求对f(x,y)进行拟合,可选用乘积型最小二乘拟合。与的数表由方程组与表A-1得到。2.与1使用相同方法求得,由计算得出的p(x,y)直接带入求得。算法实现1.与的数表的获得对区域上的f(x,y)值可由方程组及二维数表得到。将区域D上的分别回代于方程组(A.3),成为关于t,u,v,w的4元非线性方程组,解出每个对应的t,u。再通过表A-1进行插值近似,得到相应的z值。对应的z即为D区域上对应的。从而得到与的数表。(1)4元非线性方程组求解代入(A.3)后,原方程组变为关于t,u,v,w的4元非线性方程组。观察到方程组中方程形式较为简单,易于对变量t,u,v,w求偏导数,故而选用Newton法对方程组求解。计算方程组矩阵为:计算方程组偏导数矩阵为:迭代公式为:,k=0,1,2,…,n其中为线性方程组的解。取为迭代终止条件。由表A-1观察到t,u基本在(0,2)上,于是选取为迭代初值。通过以上方法求得与对应的。分片二元双二次代数插值为保证代数插值的收敛性,应采用分片低次插值。故此使用分片双二次代数插值。给定如满足如下关系式:,,则选择为插值节点,相应插值多项式为其中如果,则上式取m=1或m=4;如果或,则取n=1或n=4。得到表达式后,直接带入,得到的值即为与对应的。2.乘积型最小二乘曲面拟合使用乘积型最小二乘拟合,根据k值不用,有基函数矩阵如下:,数表矩阵如下:记C=[],则系数的表达式矩阵为:通过求解如下线性方程,即可得到系数矩阵C。计算(i=1,2,…,8;j=1,2,…,5)的值的计算与相同。将代入原方程组,求解响应进行分片双二次插值求得。的计算则可以直接将代入所求p(x,y)。C程序计算结果二元二次分片插值得到数表:xi,yj,fxi,yj,i,,,1;j,,,20。xi=0.00yi=1.50f(xi,yi)=-6.149885466094e-001xi=0.08yi=0.50f(xi,yi)=6.380152265102e-001xi=0.08yi=0.55f(xi,yi)=5.066117551462e-001xi=0.08yi=0.60f(xi,yi)=3.821763692772e-001xi=0.08yi=0.65f(xi,yi)=2.648634911536e-001xi=0.08yi=0.70f(xi,yi)=1.547802002848e-001xi=0.08yi=0.75f(xi,yi)=5.199268349093e-002xi=0.08yi=0.80f(xi,yi)=-4.346804020491e-002xi=0.08yi=0.85f(xi,yi)=-1.316010567885e-001xi=0.08yi=0.90f(xi,yi)=-2.124310883088e-001xi=0.08yi=0.95f(xi,yi)=-2.860045510580e-001xi=0.08yi=1.00f(xi,yi)=-3.523860789794e-001xi=0.08yi=1.05f(xi,yi)=-4.116554565222e-001xi=0.08yi=1.10f(xi,yi)=-4.639049115188e-001xi=0.08yi=1.15f(xi,yi)=-5.092367247005e-001xi=0.08yi=1.20f(xi,yi)=-5.477611179623e-001xi=0.08yi=1.25f(xi,yi)=-5.795943883391e-001xi=0.08yi=1.30f(xi,yi)=-6.048572588895e-001xi=0.08yi=1.35f(xi,yi)=-6.236734213318e-001xi=0.08yi=1.40f(xi,yi)=-6.361682484133e-001xi=0.08yi=1.45f(xi,yi)=-6.424676566901e-001xi=0.08yi=1.50f(xi,yi)=-6.426971026996e-001xi=0.16yi=0.50f(xi,yi)=8.400813957651e-001xi=0.16yi=0.55f(xi,yi)=6.997641656726e-001xi=0.16yi=0.60f(xi,yi)=5.660614423514e-001xi=0.16yi=0.65f(xi,yi)=4.391716081175e-001xi=0.16yi=0.70f(xi,yi)=3.192421380408e-001xi=0.16yi=0.75f(xi,yi)=2.063761923874e-001xi=0.16yi=0.80f(xi,yi)=1.006385238914e-001xi=0.16yi=0.85f(xi,yi)=2.060740067836e-003xi=0.16yi=0.90f(xi,yi)=-8.935402476698e-002xi=0.16yi=0.95f(xi,yi)=-1.736269688649e-001xi=0.16yi=1.00f(xi,yi)=-2.507999561599e-001xi=0.16yi=1.05f(xi,yi)=-3.209322694446e-001xi=0.16yi=1.10f(xi,yi)=-3.840977350046e-001xi=0.16yi=1.15f(xi,yi)=-4.403821754175e-001xi=0.16yi=1.20f(xi,yi)=-4.898811523126e-001xi=0.16yi=1.25f(xi,yi)=-5.326979655338e-001xi=0.16yi=1.30f(xi,yi)=-5.689418792921e-001xi=0.16yi=1.35f(xi,yi)=-5.987265495151e-001xi=0.16yi=1.40f(xi,yi)=-6.221686297503e-001xi=0.16yi=1.45f(xi,yi)=-6.393865356972e-001xi=0.16yi=1.50f(xi,yi)=-6.504993507878e-001xi=0.24yi=0.50f(xi,yi)=1.051515091801e+000xi=0.24yi=0.55f(xi,yi)=9.029274308302e-001xi=0.24yi=0.60f(xi,yi)=7.605802668593e-001xi=0.24yi=0.65f(xi,yi)=6.247151981455e-001xi=0.24yi=0.70f(xi,yi)=4.955197560009e-001xi=0.24yi=0.75f(xi,yi)=3.731340427746e-001xi=0.24yi=0.80f(xi,yi)=2.576567488723e-001xi=0.24yi=0.85f(xi,yi)=1.491505594102e-001xi=0.24yi=0.90f(xi,yi)=4.764698677337e-002xi=0.24yi=0.95f(xi,yi)=-4.684932320146e-002xi=0.24yi=1.00f(xi,yi)=-1.343567603849e-001xi=0.24yi=1.05f(xi,yi)=-2.149133449274e-001xi=0.24yi=1.10f(xi,yi)=-2.885737006348e-001xi=0.24yi=1.15f(xi,yi)=-3.554063647857e-001xi=0.24yi=1.20f(xi,yi)=-4.154913964886e-001xi=0.24yi=1.25f(xi,yi)=-4.689182499695e-001xi=0.24yi=1.30f(xi,yi)=-5.157838831247e-001xi=0.24yi=1.35f(xi,yi)=-5.561910752001e-001xi=0.24yi=1.40f(xi,yi)=-5.902469305629e-001xi=0.24yi=1.45f(xi,yi)=-6.180615482412e-001xi=0.24yi=1.50f(xi,yi)=-6.397468392579e-001xi=0.32yi=0.50f(xi,yi)=1.271246751481e+000xi=0.32yi=0.55f(xi,yi)=1.115002018146e+000xi=0.32yi=0.60f(xi,yi)=9.646077272154e-001xi=0.32yi=0.65f(xi,yi)=8.203473694749e-001xi=0.32yi=0.70f(xi,yi)=6.824476781794e-001xi=0.32yi=0.75f(xi,yi)=5.510852085975e-001xi=0.32yi=0.80f(xi,yi)=4.263923859018e-001xi=0.32yi=0.85f(xi,yi)=3.084629956332e-001xi=0.32yi=0.90f(xi,yi)=1.973571296919e-001xi=0.32yi=0.95f(xi,yi)=9.310562085941e-002xi=0.32yi=1.00f(xi,yi)=-4.285992234034e-003xi=0.32yi=1.05f(xi,yi)=-9.483392529689e-002xi=0.32yi=1.10f(xi,yi)=-1.785729903640e-001xi=0.32yi=1.15f(xi,yi)=-2.555537790546e-001xi=0.32yi=1.20f(xi,yi)=-3.258401501575e-001xi=0.32yi=1.25f(xi,yi)=-3.895069883634e-001xi=0.32yi=1.30f(xi,yi)=-4.466382045995e-001xi=0.32yi=1.35f(xi,yi)=-4.973249517677e-001xi=0.32yi=1.40f(xi,yi)=-5.416640326994e-001xi=0.32yi=1.45f(xi,yi)=-5.797564797951e-001xi=0.32yi=1.50f(xi,yi)=-6.117062881476e-001xi=0.40yi=0.50f(xi,yi)=1.498321052481e+000xi=0.40yi=0.55f(xi,yi)=1.334998632066e+000xi=0.40yi=0.60f(xi,yi)=1.177125123739e+000xi=0.40yi=0.65f(xi,yi)=1.025024055020e+000xi=0.40yi=0.70f(xi,yi)=8.789600231743e-001xi=0.40yi=0.75f(xi,yi)=7.391451087035e-001xi=0.40yi=0.80f(xi,yi)=6.057448714871e-001xi=0.40yi=0.85f(xi,yi)=4.788838610666e-001xi=0.40yi=0.90f(xi,yi)=3.586506258818e-001xi=0.40yi=0.95f(xi,yi)=2.451022361964e-001xi=0.40yi=1.00f(xi,yi)=1.382683509285e-001xi=0.40yi=1.05f(xi,yi)=3.815486540699e-002xi=0.40yi=1.10f(xi,yi)=-5.525282116814e-002xi=0.40yi=1.15f(xi,yi)=-1.419868808137e-001xi=0.40yi=1.20f(xi,yi)=-2.220944390959e-001xi=0.40yi=1.25f(xi,yi)=-2.956352324598e-001xi=0.40yi=1.30f(xi,yi)=-3.626795115028e-001xi=0.40yi=1.35f(xi,yi)=-4.233061642240e-001xi=0.40yi=1.40f(xi,yi)=-4.776010361325e-001xi=0.40yi=1.45f(xi,yi)=-5.256554266672e-001xi=0.40yi=1.50f(xi,yi)=-5.675647436551e-001xi=0.48yi=0.50f(xi,yi)=1.731892740382e+000xi=0.48yi=0.55f(xi,yi)=1.562034577208e+000xi=0.48yi=0.60f(xi,yi)=1.397216918208e+000xi=0.48yi=0.65f(xi,yi)=1.237801006739e+000xi=0.48yi=0.70f(xi,yi)=1.084087532678e+000xi=0.48yi=0.75f(xi,yi)=9.363227723149e-001xi=0.48yi=0.80f(xi,yi)=7.947044490537e-001xi=0.48yi=0.85f(xi,yi)=6.593871980282e-001xi=0.48yi=0.90f(xi,yi)=5.304875868399e-001xi=0.48yi=0.95f(xi,yi)=4.080886854542e-001xi=0.48yi=1.00f(xi,yi)=2.922442012295e-001xi=0.48yi=1.05f(xi,yi)=1.829822068535e-001xi=0.48yi=1.10f(xi,yi)=8.030849403543e-002xi=0.48yi=1.15f(xi,yi)=-1.579041305164e-002xi=0.48yi=1.20f(xi,yi)=-1.053445516210e-001xi=0.48yi=1.25f(xi,yi)=-1.883980906096e-001xi=0.48yi=1.30f(xi,yi)=-2.650071493189e-001xi=0.48yi=1.35f(xi,yi)=-3.352378389040e-001xi=0.48yi=1.40f(xi,yi)=-3.991645038868e-001xi=0.48yi=1.45f(xi,yi)=-4.568681433016e-001xi=0.48yi=1.50f(xi,yi)=-5.084349932782e-001xi=0.56yi=0.50f(xi,yi)=1.971221786400e+000xi=0.56yi=0.55f(xi,yi)=1.795329599501e+000xi=0.56yi=0.60f(xi,yi)=1.624067113228e+000xi=0.56yi=0.65f(xi,yi)=1.457830582708e+000xi=0.56yi=0.70f(xi,yi)=1.296954649752e+000xi=0.56yi=0.75f(xi,yi)=1.141718105447e+000xi=0.56yi=0.80f(xi,yi)=9.923495333243e-001xi=0.56yi=0.85f(xi,yi)=8.490326633294e-001xi=0.56yi=0.90f(xi,yi)=7.119113522641e-001xi=0.56yi=0.95f(xi,yi)=5.810941589219e-001xi=0.56yi=1.00f(xi,yi)=4.566585132334e-001xi=0.56yi=1.05f(xi,yi)=3.386544961394e-001xi=0.56yi=1.10f(xi,yi)=2.271082557696e-001xi=0.56yi=1.15f(xi,yi)=1.220250891932e-001xi=0.56yi=1.20f(xi,yi)=2.339221963760e-002xi=0.56yi=1.25f(xi,yi)=-6.881870197104e-002xi=0.56yi=1.30f(xi,yi)=-1.546493442129e-001xi=0.56yi=1.35f(xi,yi)=-2.341526664587e-001xi=0.56yi=1.40f(xi,yi)=-3.073910919133e-001xi=0.56yi=1.45f(xi,yi)=-3.744348623481e-001xi=0.56yi=1.50f(xi,yi)=-4.353605565359e-001xi=0.64yi=0.50f(xi,yi)=2.215667863688e+000xi=0.64yi=0.55f(xi,yi)=2.034201133607e+000xi=0.64yi=0.60f(xi,yi)=1.856955143619e+000xi=0.64yi=0.65f(xi,yi)=1.684358164161e+000xi=0.64yi=0.70f(xi,yi)=1.516776352400e+000xi=0.64yi=0.75f(xi,yi)=1.354519041151e+000xi=0.64yi=0.80f(xi,yi)=1.197844086673e+000xi=0.64yi=0.85f(xi,yi)=1.046963049419e+000xi=0.64yi=0.90f(xi,yi)=9.020460838023e-001xi=0.64yi=0.95f(xi,yi)=7.632264776629e-001xi=0.64yi=1.00f(xi,yi)=6.306048219543e-001xi=0.64yi=1.05f(xi,yi)=5.042528145972e-001xi=0.64yi=1.10f(xi,yi)=3.842167155457e-001xi=0.64yi=1.15f(xi,yi)=2.705204766410e-001xi=0.64yi=1.20f(xi,yi)=1.631685723996e-001xi=0.64yi=1.25f(xi,yi)=6.214855811676e-002xi=0.64yi=1.30f(xi,yi)=-3.256661939682e-002xi=0.64yi=1.35f(xi,yi)=-1.210165348444e-001xi=0.64yi=1.40f(xi,yi)=-2.032513996228e-001xi=0.64yi=1.45f(xi,yi)=-2.793303595584e-001xi=0.64yi=1.50f(xi,yi)=-3.493199575400e-001xi=0.72yi=0.50f(xi,yi)=2.464684222660e+000xi=0.72yi=0.55f(xi,yi)=2.278058979399e+000xi=0.72yi=0.60f(xi,yi)=2.095251250840e+000xi=0.72yi=0.65f(xi,yi)=1.916718127997e+000xi=0.72yi=0.70f(xi,yi)=1.742854628776e+000xi=0.72yi=0.75f(xi,yi)=1.573998427334e+000xi=0.72yi=0.80f(xi,yi)=1.410434835231e+000xi=0.72yi=0.85f(xi,yi)=1.252401750608e+000xi=0.72yi=0.90f(xi,yi)=1.100094409628e+000xi=0.72yi=0.95f(xi,yi)=9.536698512613e-001xi=0.72yi=1.00f(xi,yi)=8.132510552489e-001xi=0.72yi=1.05f(xi,yi)=6.789307429659e-001xi=0.72yi=1.10f(xi,yi)=5.507748485043e-001xi=0.72yi=1.15f(xi,yi)=4.288256769731e-001xi=0.72yi=1.20f(xi,yi)=3.131047717398e-001xi=0.72yi=1.25f(xi,yi)=2.036155140327e-001xi=0.72yi=1.30f(xi,yi)=1.003454782409e-001xi=0.72yi=1.35f(xi,yi)=3.268565186572e-003xi=0.72yi=1.40f(xi,yi)=-8.765306591329e-002xi=0.72yi=1.45f(xi,yi)=-1.724672478188e-001xi=0.72yi=1.50f(xi,yi)=-2.512302207523e-001xi=0.80yi=0.50f(xi,yi)=2.717811109469e+000xi=0.80yi=0.55f(xi,yi)=2.526399501256e+000xi=0.80yi=0.60f(xi,yi)=2.338411386860e+000xi=0.80yi=0.65f(xi,yi)=2.154329377280e+000xi=0.80yi=0.70f(xi,yi)=1.974574556652e+000xi=0.80yi=0.75f(xi,yi)=1.799510579099e+000xi=0.80yi=0.80f(xi,yi)=1.629448220554e+000xi=0.80yi=0.85f(xi,yi)=1.464650043751e+000xi=0.80yi=0.90f(xi,yi)=1.305334967651e+000xi=0.80yi=0.95f(xi,yi)=1.151682621307e+000xi=0.80yi=1.00f(xi,yi)=1.003837419906e+000xi=0.80yi=1.05f(xi,yi)=8.619123372279e-001xi=0.80yi=1.10f(xi,yi)=7.259923711112e-001xi=0.80yi=1.15f(xi,yi)=5.961377115201e-001xi=0.80yi=1.20f(xi,yi)=4.723866279136e-001xi=0.80yi=1.25f(xi,yi)=3.547580958979e-001xi=0.80yi=1.30f(xi,yi)=2.432541841813e-001xi=0.80yi=1.35f(xi,yi)=1.378622225247e-001xi=0.80yi=1.40f(xi,yi)=3.855677032640e-002xi=0.80yi=1.45f(xi,yi)=-5.469859593446e-002xi=0.80yi=1.50f(xi,yi)=-1.419496597088e-001二元拟合选择过程的k,值。k=1delt=3.220908973633e+000k=2delt=4.659960033245e-003k=3delt=1.721175379304e-004k=4delt=3.309534300965e-006k=5delt=2.541377726903e-0083、达到精度要求的k,的值及px,y中的系数crsr,,,k;s,,,kk=5delt=2.541377726903e-008c00=2.021230518450e+000c01=-3.668426794957e+000c02=7.092486168036e-001c03=8.486054057126e-001c04=-4.158974374886e-001c05=6.743199534489e-002c10=3.191909002842e+000c11=-7.411103426492e-001c12=-2.697124675595e+000c13=1.631183480281e+000c14=-4.847200129551e-001c15=6.061428925366e-002c20=2.568898167761e-001c21=1.579918650153e+000c22=-4.634081038207e-001c23=-8.134442647695e-002c24=1.020942593968e-001c25=-2.101523522901e-002c30=-2.692603588795e-001c31=-7.302475370891e-001c32=1.076144819072e+000c33=-8.070125477467e-001c34=3.028726690098e-001c35=-4.597260945236e-002c40=2.174597893315e-001c41=-1.783725755708e-001c42=-7.240538548997e-002c43=2.433300406299e-001c44=-1.413345241120e-001c45=2.651019960902e-002c50=-5.590328377840e-002c51=1.431993440001e-001c52=-1.362705851344e-001c53=4.071984198418e-002c54=3.774922834692e-003c55=-2.667680026547e-003f(0.1,0.7)=1.94720407918e-001p(0.1,0.7)=1.94730357534e-001f(0.1,0.9)=-1.83037079189e-001p(0.1,0.9)=-1.83041838756e-001f(0.1,1.1)=-4.45497646915e-001p(0.1,1.1)=-4.45500041806e-001f(0.1,1.3)=-5.97566707641e-001p(0.1,1.3)=-5.97558856937e-001f(0.1,1.5)=-6.46459593901e-001p(0.1,1.5)=-6.46446110815e-001f(0.2,0.7)=4.05979189288e-001p(0.2,0.7)=4.05989539815e-001f(0.2,0.9)=-2.25159583746e-002p(0.2,0.9)=-2.25211161201e-002f(0.2,1.1)=-3.38220816040e-001p(0.2,1.1)=-3.38224022551e-001f(0.2,1.3)=-5.44437831522e-001p(0.2,1.3)=-5.44430450907e-001f(0.2,1.5)=-6.47361338568e-001p(0.2,1.5)=-6.47348010856e-001f(0.3,0.7)=6.34777195151e-001p(0.3,0.7)=6.34787452928e-001f(0.3,0.9)=1.58801168839e-001p(0.3,0.9)=1.58796295997e-001f(0.3,1.1)=-2.07365694171e-001p(0.3,1.1)=-2.07368580368e-001f(0.3,1.3)=-4.65357906898e-001p(0.3,1.3)=-4.65349923294e-001f(0.3,1.5)=-6.20270953075e-001p(0.3,1.5)=-6.20257138940e-001f(0.4,0.7)=8.78960023174e-001p(0.4,0.7)=8.78969865341e-001f(0.4,0.9)=3.58650625882e-001p(0.4,0.9)=3.58646043341e-001f(0.4,1.1)=-5.52528211681e-002p(0.4,1.1)=-5.52554368602e-002f(0.4,1.3)=-3.62679511503e-001p(0.4,1.3)=-3.62671062974e-001f(0.4,1.5)=-5.67564743655e-001p(0.4,1.5)=-5.67550582797e-001f(0.5,0.7)=1+000p(0.5,0.7)=1+000f(0.5,0.9)=5.74980340948e-001p(0.5,0.9)=5.74975842722e-001f(0.5,1.1)=1-001p(0.5,1.1)=1-001f(0.5,1.3)=-2.38568304012e-001p(0.5,1.3)=-2.38560419243e-001f(0.5,1.5)=-4.91434393656e-001p(0.5,1.5)=-4.91420900529e-001f(0.6,0.7)=1.40604179891e+000p(0.6,0.7)=1.40605068705e+000f(0.6,0.9)=8.05941494063e-001p(0.6,0.9)=8.05937301858e-001f(0.6,1.1)=3.04429221045e-001p(0.6,1.1)=3.04425832104e-001f(0.6,1.3)=-9.50161300996e-002p(0.6,1.3)=-9.50089457510e-002f(0.6,1.5)=-3.93902307746e-001p(0.6,1.5)=-3.93889837520e-001f(0.7,0.7)=1.68578351531e+000p(0.7,0.7)=1.68579121728e+000f(0.7,0.9)=1.04988115306e+000p(0.7,0.9)=1.04987773922e+000f(0.7,1.1)=5.08293783940e-001p(0.7,1.1)=5.08291044786e-001f(0.7,1.3)=6.61487967065e-002p(0.7,1.3)=6.61563555471e-002f(0.7,1.5)=-2.76834341778e-001p(0.7,1.5)=-2.76822043364e-001f(0.8,0.7)=1.97457455665e+000p(0.8,0.7)=1.97458126127e+000f(0.8,0.9)=1.30533496765e+000p(0.8,0.9)=1.30533200389e+000f(0.8,1.1)=7.25992371111e-001p(0.8,1.1)=7.25989310611e-001f(0.8,1.3)=2.43254184181e-001p(0.8,1.3)=2.43260790457e-001f(0.8,1.5)=-1.41949659709e-001p(0.8,1.5)=-1.41938788779e-001C程序代码#include<iostream.h>#include<stdio.h>#include<math.h>doublefabsmax(doublex[4]);intfabsmax_flag(doublex[4],intk);voidgauss(doublea_0[4][4],doubleb[4],doubledeltx[4]);voidfunction(doublet_1[11][21],doubleu_1[11][21],doublex_0[4]);voidchazhi(doublet_1[11][21],doubleu_1[11][21],doublez[11][21],doublet_0[6],doubleu_0[6],doublez_0[6][6]);voidf(doublet_1,doubleu_1,intflag[2]);intnihe(doubleu[11][21],doublec[11][11],doubledelt[11]);voidgauss_1(doubleb[11][11],doubleu[11][21],doublea[11][21],intl);voidgauss_2(doubleg[21][21],doubled[21][21],intl);intfabsmax_flag_1(doublex[11],intk,intl);void f_p(doublf_xy[8][5],double g_xy[8][5],double x_0[4],doubleu_0[6],doublet_0[6],doublez_0[6][6],doublec[11][11]);/*-main函数:在给定区域上作二元拟合得到满足精度要求的P(X,Y),为确定拟合节点(x,y,z)需要解非线性方程组和作二元分片插值。*/main(){doubleu_0[6]={0,0.4,0.8,1.2,1.6,2};doublet_0[6]={0,0.2,0.4,0.6,0.8,1.0};doublez_0[6][6]={{-0.5,-0.34,0.14,0.94,2.06,3.5},{-0.42,-0.5,-0.26,0.3,1.18,2.38},{-0.18,-0.5,-0.5,-0.18,0.46,1.42},{0.22,-0.34,-0.58,-0.5,-0.1,0.62},{0.78,-0.02,-0.5,-0.66,-0.5,-0.02},{1.5,0.46,-0.26,-0.66,-0.74,-0.5}};inti,j,k;doubleu_1[11][21],t_1[11][21],z[11][21],x_0[4]={0.5,0.5,0.5,1};doubledelt[11],c[11][11];doublef_xy[8][5],g_xy[8][5];function(t_1,u_1,x_0);chazhi(t_1,u_1,z,t_0,u_0,z_0);k=nihe(z,c,delt);for(i=0;i<=10;i++)for(j=0;j<=20;j++){printf("\n");printf("\t");printf("xi=%3.2f yi=%3.2ff(xi,yi)=%14.12e",0.08*i,(0.5+0.05*j),z[i][j]);}printf("\n");for(i=1;i<=5;i++){printf("\t");printf("k=%d delt=%14.12e",i,delt[i-1]);printf("\n");}printf("\n");printf("\t");printf("k=5 delt=%14.12e",delt[4]);printf("\n");printf("\n");for(i=0;i<=k;i++)for(j=0;j<=k;j++){printf("\t");printf("c%d%d=%14.12e",i,j,c[i][j]);printf("\n");}printf("\n");f_p(f_xy,g_xy,x_0,u_0,t_0,z_0,c);printf("\n");for(i=1;i<=8;i++)for(j=1;j<=5;j++){printf("\n");printf("f(%2.1f,%2.1f)=%12.11ep(%2.1f,%2.1f)=%12.11e",0.1*i,(0.5+0.2*j),f_xy[i-1][j-1],0.1*i,(0.5+0.2*j),g_xy[i-1][j-1]);}printf("\n");printf("\n");}/*fabsmax函数:求无穷范数*/doublefabsmax(doublex[4]){doubleb=0;inti;b=fabs(x[0]);for(i=1;i<=3;i++){if(fabs(x[i])>b)b=fabs(x[i]);}returnb;}/*fabsmax_flag 函数:返回数组 x[4]中最大元素所在的位置*/intfabsmax_flag(doublex[4],intk){doubleb=0;inti,flag=k;b=fabs(x[k]);for(i=k+1;i<=3;i++)if(fabs(x[i])>b){flag=i;b=fabs(x[i]);}returnflag;}/*fabsmax_flag_1函数:比较数据绝对值的大小,并返回按模最大值所在的行号*/intfabsmax_flag_1(doublex[11],intk,intl){doubleb=0;inti,flag=k;b=fabs(x[k]);for(i=k+1;i<=l;i++)if(fabs(x[i])>b){flag=i;b=fabs(x[i]);}returnflag;}/*gauss 函 数 : 列 主 元 素 Gauss 法 解 线 性 方 程 组*/voidgauss(doublea_0[4][4],doubleb[4],doubledeltx[4]){doublea[4][4],x[4],aa;inti,j,k,flag;for(i=0;i<=3;i++)for(j=0;j<=3;j++)a[i][j]=a_0[i][j];for(k=0;k<=2;k++){for(i=k;i<=3;i++)x[i]=a[i][k];flag=fabsmax_flag(x,k);if(flag!=k){for(j=k;j<=3;j++){aa=a[k][j];a[k][j]=a[flag][j];a[flag][j]=aa;}aa=b[k];b[k]=b[flag];b[flag]=aa;}for(i=k+1;i<=3;i++){aa=a[i][k]/a[k][k];for(j=k+1;j<=3;j++)a[i][j]-=aa*a[k][j];b[i]-=aa*b[k];}}deltx[3]=b[3]/a[3][3];for(k=2;k>=0;k--){for(j=k+1;j<=3;j++)b[k]-=a[k][j]*deltx[j];deltx[k]=b[k]/a[k][k];}}/*function 函 数 : Newton 法 解 非 线 性 方 程 组*/voidfunction(doublet_1[11][21],doubleu_1[11][21],doublex_0[4]){doublea[4][4]={{0,1,1,1},{1,0,1,1},{0.5,1,0,1},{1,0.5,1,0}};doubleb[4],deltx[4],x[4];inti,j,k;for(i=0;i<=10;i++)for(j=0;j<=20;j++){for(k=0;k<=3;k++)x[k]=x_0[k];for(;;){a[0][0]=-0.5*sin(x[0]);a[1][1]=0.5*cos(x[1]);a[2][2]=-sin(x[2]);a[3][3]=cos(x[3]);b[0]=-(0.5*cos(x[0])+x[1]+x[2]+x[3]-0.08*i-2.67);b[1]=-(x[0]+0.5*sin(x[1])+x[2]+x[3]-(0.5+0.05*j)-1.07);b[2]=-(0.5*x[0]+x[1]+cos(x[2])+x[3]-0.08*i-3.74);b[3]=-(x[0]+0.5*x[1]+x[2]+sin(x[3])-(0.5+0.05*j)-0.79);gauss(a,b,deltx);for(k=0;k<=3;k++)x[k]+=deltx[k];if((fabsmax(deltx)/fabsmax(x))<=1e-12){t_1[i][j]=x[0];u_1[i][j]=x[1];break;}}}}/*f函数:作二元分片插值时用到的函数,用于确定给定的(t,u)所在的插值区域*/voidf(doublet_1,doubleu_1,intflag[2]){intflag1,flag2;flag1=(int)(t_1/0.1);flag2=(int)(u_1/0.2);if(flag1>=0&&flag1<3)flag1=0;elseif(flag1>=3&&flag1<5)flag1=1;elseif(flag1>=5&&flag1<7)flag1=2;elseflag1=3;if(flag2>=0&&flag2<3)flag2=0;elseif(flag2>=3&&flag2<5)flag2=1;elseif(flag2>=5&&flag2<7)flag2=2;elseflag2=3;flag[0]=flag1;flag[1]=flag2;}/*chazhi 函 数 : 分 片 二 元 插 值*/voidchazhi(doublet_1[11][21],doubleu_1[11][21],doublez[11][21],doublet_0[6],doubleu_0[6],doublez_0[6][6]){doublel_t[3],l_u[3];inti,j,k,l,flag[2];for(i=0;i<=10;i++)for(j=0;j<=20;j++){z[i][j]=0;f(t_1[i][j],u_1[i][j],flag);l_t[0]=(t_1[i][j]-t_0[flag[0]+1])*(t_1[i][j]-t_0[flag[0]+2])/0.08;l_t[1]=(t_1[i][j]-t_0[flag[0]])*(t_1[i][j]-t_0[flag[0]+2])/(-0.04);l_t[2]=(t_1[i][j]-t_0[flag[0]])*(t_1[i][j]-t_0[flag[0]+1])/0.08;l_u[0]=(u_1[i][j]-u_0[flag[1]+1])*(u_1[i][j]-u_0[flag[1]+2])/0.32;l_u[1]=(u_1[i][j]-u_0[flag[1]])*(u_1[i][j]-u_0[flag[1]+2])/(-0.16);l_u[2]=(u_1[i][j]-u_0[flag[1]])*(u_1[i][j]-u_0[flag[1]+1])/0.32;for(k=0;k<=2;k++)for(l=0;l<=2;l++)z[i][j]+=z_0[flag[0]+k][flag[1]+l]*l_t[k]*l_u[l];}}/*gauss_1函数:列主元素Gauss法解线性方程组*/voidgauss_1(doubleb[11][11],doubleu[11][21],doublea[11][21],intl){doubleb_1[11][11],b_2[11][11],b_3[11][21],x[11],aa;inti,j,k,flag;for(i=0;i<=10;i++)for(j=0;j<=l;j++)b_2[j][i]=b[i][j];for(i=0;i<=l;i++)for(j=0;j<=20;j++){b_3[i][j]=0;for(k=0;k<=10;k++)b_3[i][j]+=b_2[i][k]*u[k][j];}for(i=0;i<=l;i++)for(j=0;j<=l;j++){b_1[i][j]=0;for(k=0;k<=10;k++)b_1[i][j]+=b_2[i][k]*b[k][j];}for(k=0;k<l;k++){for(i=k;i<=l;i++)x[i]=b_1[i][k];flag=fabsmax_flag_1(x,k,l);if(flag!=k){for(j=k;j<=l;j++){aa=b_1[k][j];b_1[k][j]=b_1[flag][j];b_1[flag][j]=aa;}for(j=0;j<=20;j++){aa=b_3[k][j];b_3[k][j]=b_3[flag][j];b_3[flag][j]=aa;}}for(i=k+1;i<=l;i++){aa=b_1[i][k]/b_1[k][k];for(j=k+1;j<=l;j++)b_1[i][j]-=aa*b_1[k][j];for(j=0;j<=20;j++)b_3[i][j]-=aa*b_3[k][j];}}for(i=0;i<=20;i++){a[l][i]=b_3[l][i]/b_1[l][l];for(k=l-1;k>=0;k--){for(j=k+1;j<=l;j++)b_3[k][i]-=b_1[k][j]*a[j][i];a[k][i]=b_3[k][i]/b_1[k][k];}}}/*gauss_2函数:列主元素Gauss法解线性方程组*/voidgauss_2(doubleg[21][21],doubled[21][21],intl){doubleg_1[21][21],g_2[21][21],d_0[21][21],x[11],aa;inti,j,k,flag;for(i=0;i<=20;i++)for(j=0;j<=l;j++)g_2[j][i]=g[i][j];for(i=0;i<=l;i++)for(j=0;j<=l;j++){g_1[i][j]=0;for(k=0;k<=20;k++)g_1[i][j]+=g_2[i][k]*g[k][j];}for(k=0;k<l;k++){for(i=k;i<=l;i++)x[i]=g_1[i][k];flag=fabsmax_flag_1(x,k,l);if(flag!=k){for(j=k;j<=l;j++){aa=g_1[k][j];g_1[k][j]=g_1[flag][j];g_1[flag][j]=aa;}for(j=0;j<=20;j++){aa=g_2[k][j];g_2[k][j]=g_2[flag][j];g_2[flag][j]=aa;}}for(i=k+1;i<=l;i++){aa=g_1[i][k]/g_1[k][k];for(j=k+1;j<=l;j++)g_1[i][j]-=aa*g_1[k][j];for(j=0;j<=20;j++)g_2[i][j]-=aa*g_2[k][j];}}for(i=0;i<=20;i++){d_0[l][i]=g_2[l][i]/g_1[l][l];for(k=l-1;k>=0;k--){for(j=k+1;j<=l;j++)g_2[k][i]-=g_1[k][j]*d_0[j][i];d_0[k][i]=g_2[k][i]/g_1[k][k];}}for(i=0;i<=l;i++)for(j=0;j<=20;j++)d[j][i]=d_0[i][j];}/*nihe 函 数 : 二 元 拟 合*/intnihe(doubleu[11][21],doublec[11][11],doubledelt[11]){doublea[11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Mumeose-K-生命科学试剂-MCE-2774
- 5-Fluoro-THJ-生命科学试剂-MCE-6389
- 2025年度环保型空调拆卸作业安全协议书
- 2025年度文化创意产业居间代理协议
- 二零二五年度父母出资购房子女房产份额分配协议
- 2025年度无房产证房屋买卖风险评估合同
- 二零二五年度砍树承包合同及林业资源管理实施协议
- 二零二五年度企业食堂档口租赁合同与员工餐饮补贴协议
- 高标准实验环境下的安全防护措施探讨
- 临时用电安全合同协议
- 设计单位-质量管理体系
- 2024版《供电营业规则》学习考试题库500题(含答案)
- 福建省医院大全
- GB/T 16659-2024煤中汞的测定方法
- 闪蒸罐计算完整版本
- (高清版)DZT 0073-2016 电阻率剖面法技术规程
- 完整2024年开工第一课课件
- 货运车辆驾驶员安全培训内容资料完整
- 高一学期述职报告
- 风神汽车4S店安全生产培训课件
- ICU患者的体位转换与床旁运动训练
评论
0/150
提交评论