高中数学《10.3概率与频率》教学课件_第1页
高中数学《10.3概率与频率》教学课件_第2页
高中数学《10.3概率与频率》教学课件_第3页
高中数学《10.3概率与频率》教学课件_第4页
高中数学《10.3概率与频率》教学课件_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.3频率与概率知识海洋频率的稳定性

一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).知识海洋随机数的相关概念及随机数产生的方法

1.随机数:要产生1~n(n∈N*)之间的随机整数,把n个质地和大小相同的小球分别标上1,2,3,…,n,放入一个容器中,充分搅拌后取出一个球,这个球上的数就称为随机数.

2.伪随机数:计算机或计算器产生的随机数是按照确定的算法产生的数,具有周期性(周期很长),它们具有类似随机数的性质.因此,计算机或计算器产生的随机数不是真正的随机数,我们称它们为伪随机数.

3.产生随机数的方法:教材中给出了两种产生随机数的方法:①利用带有PRB功能的计算器产生随机数;②用计算机软件产生随机数,比如用Excel软件产生随机数.我们只要按照它的程序一步一步执行即可.

4.用随机模拟估计概率的步骤:(1)建立概率模型;(2)进行模拟试验,可用计算器或计算机进行模拟试验;(3)统计试验结果.

【解】应用探究

【例】有以下说法:

①昨天没有下雨,则说明“昨天气象局的天气预报降水概率为95%”是错误的;

②“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖;

③做10次抛硬币的试验,结果3次正面朝上,因此正面朝上的概率为

④某厂产品的次品率为2%,但该厂的50件产品中可能有2件次品.

其中错误说法的序号是________.

①中降水概率为95%,仍有不降水的可能,故①错误;

②中“彩票中奖的概率是1%”表示在设计彩票时,有1%的机会中奖,但不一定买100张彩票一定有1张会中奖,故②错误;

③中正面朝上的频率为

,概率仍为

,故③错误;

④中次品率为2%,但50件产品中可能没有次品,也可能有1件或2件或3件……次品,故④正确.①②③要点突破应用探究

对概率的正确理解:(1)概率是事件的本质属性,不随试验次数的变化而变化,概率反映了事件发生的可能性的大小,但概率只提供了一种“可能性”,而不是试验总次数中某一事件一定发生的比例.(2)任何事件的概率都是区间[0,1]上的一个确定数,它度量该事件发生的可能性,概率越接近于1,表明事件发生的可能性就越大;反过来,概率越接近于0,表明事件发生的可能性就越小.(3)小概率(概率接近于0)事件很少发生,但不代表一定不发生;大概率(概率接近于1)事件经常发生,但不代表一定发生.(4)必然事件M的概率为1,即P(M)=1;不可能事件N的概率为0,即P(N)=0.

【解】拓广探索

某医院治疗一种疾病的治愈率为10%,那么,前9个病人都没有治愈,第10个病人就一定能治愈吗?

如果把治疗一个病人作为一次试验,治愈率是10%指随着试验次数的增加,有10%的病人能够治愈.对于一次试验来说,其结果是随机的,但治愈的可能性是10%,前9个病人被治愈的可能性是10%,第10个病人被治愈的可能性仍是10%,可能被治愈,也可能不被治愈.应用探究名师点拨频率与概率的区别与联系名称区别联系频率本身是随机的,在试验之前无法确定,大多会随着试验次数的改变而改变.做同样次数的重复试验,得到的频率值也可能会不同(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率(2)在实际问题中,事件的概率通常情况下是未知的,常用频率估计概率概率是一个[0,1]中的确定值,不随试验结果的改变而改变应用探究应用探究

【例】某校高二年级(1)(2)班准备联合举办晚会,组织者欲使晚会气氛热烈、有趣,策划整场晚会以转盘游戏的方式进行,每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.(1)班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时(1)班代表获胜,否则(2)班代表获胜.该方案对双方是否公平?为什么?应用探究

【解】

【解】拓广探索应用探究

在本例中,若把游戏规则改为自由转动两个转盘,转盘停止后,两个指针指向的两个数字相乘,如果积是偶数,那么(1)班代表获胜,否则(2)班代表获胜.游戏规则公平吗?为什么?要点突破应用探究

游戏公平性的标准及判断方法:(1)游戏规则是否公平,要看对游戏的双方来说,获胜的可能性或概率是否相同.若相同,则规则公平,否则就是不公平的.(2)具体判断时,可以按所给规则,求出双方的获胜概率,再进行比较.要点突破应用探究应用随机数估计概率的步骤:(1)明确随机数的范围及数字与试验结果的对应关系.(2)产生随机数.(3)统计试验次数N及所求事件包含的次数n.(4)计算

便可.课堂小结

1.频率随着试验次数的变化而变化;概率却是一个常数,是客观存在的,与试验次数无关.

2.在实际应用中,只要试验的次数足够多,所得的频率就可以近似地当作随机事件的概率.

3.概率是频率的稳定值,根据概率的定义我们可知,概率越接近于1,事件A发生的频数就越多,此事件发生的可能性就越大;反之,概率越接近于0,事件A发生的频数就越少,此事件发生的可能性就越小.

4.应用随机数计算事件的概率,在设计随机试验方案时,一定要注意先确定随机数的范围和每个随机数所代表的试验结果,其次要注意用几个随机数为一组时,每组中的随机数是否能够重复.对于一些较为复杂的问题,要建立一个适当的数学模型,转换成计算机或计算器能操作的试验.课堂小结本章回顾课堂小结

一、事件间的运算

事件间的运算包含互斥事件的概率加法、对立事件的概率加法,要时刻结合Venn图用集合的思想理解.其中不能同时发生的是互斥事件,反映在集合上就是两事件的交集为空.在互斥的基础上必有一个发生的是对立事件,互为对立的两个事件概率之和为1.分类讨论思想是解决互斥事件有一个发生的概率的关键.课堂小结

二、古典概型

古典概型是一种最基本的概型,也是学习其他概率的基础.在高考题中,经常出现此种概型的题目.用古典概型计算概率时,一定要验证所构造的基本事件是否是等可能的,同时要弄清事件A所包含的等可能出现的结果(基本事件)的个数.名师点拨(1)解决古典概型的关键问题是分析样本点总数和某事件所包含的样本点数,通常用列举法或树状图表达.(2)当含有“至多”“至少”“不含

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论