乐山市峨眉山市2019届九年级上期末数学试卷含答案解析_第1页
乐山市峨眉山市2019届九年级上期末数学试卷含答案解析_第2页
乐山市峨眉山市2019届九年级上期末数学试卷含答案解析_第3页
乐山市峨眉山市2019届九年级上期末数学试卷含答案解析_第4页
乐山市峨眉山市2019届九年级上期末数学试卷含答案解析_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

/乐山市峨眉山市2019届九年级上期末数学试卷含答案解析一、选择题1.若x的算术平方根为8,则它的立方根是()A.2 B.﹣2 C.4 D.±42.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±23.若关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,且x1•x2>x1+x2﹣4,则实数m的取值范围是()A.m> B.m≤ C.m< D.<m≤4.某个体商贩在一次买卖中,卖出两件上衣,每件都按135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.则在这次买卖中他()A.不赔不赚 B.赚9元 C.赔18元 D.赚8元5.若实数x,y,z满足关系式2x+3y﹣z=0,5x﹣2y﹣2z=0,则x:y:z的值为()A.2:3:1 B.5:2:2 C.8:1:19 D.8:1:16.若方程组只有一组实数解,则k的值是()A.1 B.﹣1 C.±1 D.07.一等腰梯形中,高为2,下底为4,下底的底角正弦值为,那么它的上底和腰长分别为()A.2, B.1, C.1,2 D.2,58.如图,在▱ABCD中,E为CD的中点,AE交BD于点O,S△DCE=12,则S△AOD等于()A.24 B.36 C.48 D.609.在△ABC中,∠C=90°,∠A=30°,若CD是高,且CD=1,则a,b,c三边的长分别是()A.a=,b=2,c= B.a=2,b=,c=C.a=,b=2,c= D.a=2,b=2,c=410.如图,从地面上C、D两处望山顶A,仰角分别为30°和45°,若C、D两处相距200米,则山高AB为()A.100(+1)米 B.100米 C.100 D.20011.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等12.如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足()A.a≥b B.a≥b C.a≥b D.a≥2b13.如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,若S矩形MNPQ=y,则y与x的关系式为()A.y=6﹣x(0<x<12) B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12) D.y=x2+6x(0<x<12)二、填空题.14.计算:①+﹣(﹣4)0=;②3÷×=.15.m是方程x2﹣x﹣2=0的根,则m2﹣m=.16.观察下列等式:12﹣02=1;22﹣12=3;32﹣22=5;42﹣32=7;…用含自然数n的等式表示你发现的规律为.17.如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为.18.为抵御百年不遇的洪水,某市政府决定将1200m长的大堤的迎水坡面铺石加固,堤高DF=4m,堤面加宽2m,则完成这一工程需要的石方数为m3.19.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.20.下面是我们将在高中阶段所要学习的一个内容,请先阅读这段内容.再解答问题,三角函数中常用公式sin(α+β)=sinαcosβ+cosαsinβ,.求sin75°的值,即sin75°=sin(30°+45°)=sin30°os45°+cos30°sin45°=.试用公式cos(α+β)=cosαsinβ﹣sinαcosβ,求出cos75°的值是.三、计算题:21.计算:﹣+﹣﹣|1﹣2|﹣(﹣3)0.22.cos30°+sin245°cos60°﹣﹣tan45°.四、解答题23.如图,已知梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线AC平分∠BCD,且梯形周长为20厘米,求AC的长.24.如图,在矩形ABCD中,AB<BC,M是BC的中点,DE⊥AM于点E,且AB、BC的长是一元二次方程x2﹣7x+12=0的两根,求△DEM的面积.25.如图,一艘轮船原在A处,它的北偏东45方向上有一灯塔P,轮船沿着北偏西30方向航行4小时到达B处,这时灯塔P正好在轮船的正东方向上,已知轮船的速度为25海里/时.求轮船在B处时与灯塔P的距离(结果保留根号).26.某自然景区有一块长12米,宽8米的矩形花圃(如图所示),喷水无安装在矩对角线的交点P上,现计算从P点引3条射线,把花圃分成面积相等的三部分,分别种植三种不同的花,如果不考虑分不分的间隙.(1)请你设计出符合题意方案示意图(只要求画出图形,至少设计两个方案);(2)直接写出三条射线与矩形的有关边的交点位置;(3)试判断设计的方案中,所画出的三个面积相等的图形是否位似?27.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.五、解答题28.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.29.已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.(1)设DE=m(0<m<12),试用含m的代数式表示的值;(2)在(1)的条件下,当时,求BP的长.

-学年九年级(上)期末数学试卷参考答案与试题解析一、选择题1.若x的算术平方根为8,则它的立方根是()A.2 B.﹣2 C.4 D.±4【考点】立方根;算术平方根.【分析】直接利用算术平方根的定义得出x的值,进而结合立方根的定义得出答案.【解答】解:∵x的算术平方根为8,∴x=64,∴64的立方根是:4.故选:C.【点评】此题主要考查了立方根以及算术平方根,正确得出x的值是解题关键.2.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±2【考点】一元二次方程的定义.【专题】压轴题.【分析】本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.若关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,且x1•x2>x1+x2﹣4,则实数m的取值范围是()A.m> B.m≤ C.m< D.<m≤【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,根据根与系数的关系得到x1+x2==1,x1•x2==,然后将其代入x1•x2>x1+x2﹣4可得关于m的不等式,解不等式即可求出m的取值范围.同时一元二次方程2x2﹣2x+3m﹣1=0的有两个实数根,有△=b2﹣4ac≥0,也得到关于m的不等式,也可以得到一个m的取值范围.把两个范围结合起来即可求出m的取值范围.【解答】解:依题意得x1+x2==1,x1•x2==,而x1•x2>x1+x2﹣4,∴>﹣3,得m>;又一元二次方程2x2﹣2x+3m﹣1=0的有两个实数根,∴△=b2﹣4ac≥0,即4﹣4×2×(3m﹣1)≥0,解可得m≤.∴<m≤.故选D.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数关系即韦达定理,两根之和是,两根之积是.4.某个体商贩在一次买卖中,卖出两件上衣,每件都按135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.则在这次买卖中他()A.不赔不赚 B.赚9元 C.赔18元 D.赚8元【考点】一元一次方程的应用.【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解即可.【解答】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135,解得:x=108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x=135,解得:x=180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选C.【点评】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.5.若实数x,y,z满足关系式2x+3y﹣z=0,5x﹣2y﹣2z=0,则x:y:z的值为()A.2:3:1 B.5:2:2 C.8:1:19 D.8:1:1【考点】比例的性质;解三元一次方程组.【分析】将z看作常数,解关于x、y的二元一次方程组求出x、y,然后相比计算即可得解.【解答】解:联立,①×2得,4x+6y﹣2z=0③,②×3得,15x﹣6y﹣6z=0④,③+④得,19x=8z,解得x=z,将x=z代入①得,2×z+3y﹣z=0,解得y=z,所以,方程组的解是,所以,x:y:z=z:z:z=8:1:19.故选C.【点评】本题考查了比例的性质,解三元一次方程组,难点在于将一个未知数看作常数并表示出另外两个未知数.6.若方程组只有一组实数解,则k的值是()A.1 B.﹣1 C.±1 D.0【考点】高次方程;根的判别式.【专题】创新题型.【分析】方程组有一个一次方程和一个二次方程构成,由于方程组只有一组实数解,所以一元二次方程有两个相等的实数根.把(2)代入(1),得到关于x的一元二次方程,令根的判别式为0.确定k的值.【解答】解:由(2)得,3y=x﹣k(3);把(3)代入(1)得,x2﹣4(x﹣k)=0,即x2﹣4x+4k=0.由于方程组只有一组实数解,所以关于x的二次方程有两个相等的实数根.△=(﹣4)2﹣4×1×4k=16﹣16k=0,解得k=1.故选A.【点评】本题考查了方程组的解法和一元二次方程根的判别式.理解“只有一组实数解”,把方程组转化为一元二次方程是关键.若解决本题,变形(2)用含y的代数式表示x,题目会变的复杂.7.一等腰梯形中,高为2,下底为4,下底的底角正弦值为,那么它的上底和腰长分别为()A.2, B.1, C.1,2 D.2,5【考点】等腰梯形的性质;解直角三角形.【分析】如图,等腰梯形ABCD中,AD∥BC,AB=CD,作AF⊥BC于F,DE⊥BC于E,则四边形AFED是矩形,先证明Rt△ABF≌Rt△DCE,再在Rt△DCE中,根据sinC==,求出DC,再根据勾股定理求出CE、BF即可解决问题.【解答】解:如图,等腰梯形ABCD中,AD∥BC,AB=CD,作AF⊥BC于F,DE⊥BC于E,则四边形AFED是矩形,,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE,∴BF=CE,在Rt△DCE中,∵sinC==,∴=,∴DC=,∴EC=BF===,∴AD=EF=BC﹣2EC=4﹣2×=1.故选B.【点评】本题考查等腰梯形的性质、解直角三角形,锐角三角函数等知识,解题的关键是作双高,把四边形问题转化为三角形问题,属于中考常考题型.8.如图,在▱ABCD中,E为CD的中点,AE交BD于点O,S△DCE=12,则S△AOD等于()A.24 B.36 C.48 D.60【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据相似三角形的性质,先证△DOE∽△BOA,求出相似比为,故EO与AO之比为,即可求得S△AOD=2S△DOE.【解答】解:∵在▱ABCD中,E为CD中点,∴DE∥AB,DE=AB,在△DOE与△BOA中,∠DOE=∠BOA,∠OBA=∠ODE,∴△DOE∽△BOA,∴==,∴S△AOD=2S△DOE=2×12=24.故选(A).【点评】本题考查了平行四边形的性质以及相似三角形的判定与性质.寻找相似三角形的一般方法是通过平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形.9.在△ABC中,∠C=90°,∠A=30°,若CD是高,且CD=1,则a,b,c三边的长分别是()A.a=,b=2,c= B.a=2,b=,c=C.a=,b=2,c= D.a=2,b=2,c=4【考点】含30度角的直角三角形.【分析】根据含30度角的直角三角形求出AB=2,根据三角形的内角和定理求出∠B,求出∠BCD,根据三角函数求得BC,根据直角三角形的性质求出AB即可.【解答】解:∵∠A=30°,CD=1,CD是高,∴b=AC=2CD=2,∵∠C=90°,∴∠B=60°,∴∠BCD=30°,∴a=BC===,∴c=AB=2BC=,故选C.【点评】本题考查了三角形的内角和定理,含30度角的直角三角形的性质等知识点的应用,关键是熟练地运用含30度角的直角三角形性质进行推理,题目比较典型,难度适中.10.如图,从地面上C、D两处望山顶A,仰角分别为30°和45°,若C、D两处相距200米,则山高AB为()A.100(+1)米 B.100米 C.100 D.200【考点】解直角三角形的应用-仰角俯角问题.【分析】设山高AB为x,根据∠ADB=45°可得出AB=BD=x,在Rt△ABC中,根据锐角三角函数的定义即可得出结论.【解答】解:设山高AB为x,∵∠ADB=45°,∴AB=BD=x,在Rt△ABC中,∵∠ACB=30°,∴=tan30°,即=,解得x=100(+1)米.故选A.【点评】本题考查的是解直角三角形的应用﹣方向角问题,熟记锐角三角函数的定义是解答此题的关键.11.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选D.【点评】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.12.如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足()A.a≥b B.a≥b C.a≥b D.a≥2b【考点】相似三角形的性质;根的判别式;解分式方程.【专题】压轴题;存在型;方程思想;转化思想.【分析】本题可结合方程思想来解答.由于△ABP和△DCP相似,可得出关于AB、PC、BP、CD的比例关系式.设PC=x,那么BP=a﹣x,根据比例关系式可得出关于x的一元二次方程,由于BC边上至少有一点符合条件的P点,因此方程的△≥0,由此可求出a、b的大小关系.【解答】解:若设PC=x,则BP=a﹣x,∵△ABP∽△PCD,∴,即,即x2﹣ax+b2=0方程有解的条件是:a2﹣4b2≥0,∴(a+2b)(a﹣2b)≥0,则a﹣2b≥0,∴a≥2b.故本题选D.【点评】本题是存在性问题,可以转化为方程问题,利用判断方程的解的问题来解决.13.如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,若S矩形MNPQ=y,则y与x的关系式为()A.y=6﹣x(0<x<12) B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12) D.y=x2+6x(0<x<12)【考点】相似三角形的判定与性质;根据实际问题列二次函数关系式;矩形的性质.【分析】先根据相似三角形的判定定理得出△APN∽△ABC,那么它们的对应边和对应高的比相等,可据此求出△APN中PN边上的高的表达式,进而可求出MN的长,根据矩形的长和宽,即可得到y、x的函数关系式.【解答】解:设△APN中PN边上的高为h,∵矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,∴PN∥BC,∴△APN∽△ABC,∴,即,∴h=x,∴MN=6﹣x,∵S矩形MNPQ=PN•MN∴y=x(6﹣x),即y=﹣x2+6x(0<x<12).故选(B).【点评】本题主要考查的是相似三角形的应用及矩形的面积的计算,熟知相似三角形对应边成比例是解答此题的关键.二、填空题.14.计算:①+﹣(﹣4)0=﹣1;②3÷×=1.【考点】二次根式的混合运算;零指数幂.【分析】①根据零指数幂、二次根式化简进行计算即可;②先把除法化为乘法,再进行计算即可.【解答】解:①原式=+﹣1=﹣1,②原式=3××=1,故答案为﹣1,1.【点评】本题考查了二次根式的混合运算,掌握把二次根式化为最简二次根式是解题的关键.15.m是方程x2﹣x﹣2=0的根,则m2﹣m=2.【考点】一元二次方程的解.【分析】利用方程解的定义找到相等关系,再把m代入方程x2﹣x﹣2=0后即得m2﹣m=2.【解答】解:把m代入方程x2﹣x﹣2=0,得到m2﹣m﹣2=0则m2﹣m=2.故本题答案为m2﹣m=2.【点评】本题考查的是一元二次方程的根即方程的解的定义.16.观察下列等式:12﹣02=1;22﹣12=3;32﹣22=5;42﹣32=7;…用含自然数n的等式表示你发现的规律为(n+1)2﹣n2=2n+1.【考点】规律型:数字的变化类.【分析】观察几个等式可知,等式左边为相邻两数的平方差,右边的结果为两个底数的和,由此得出一般规律.【解答】解:∵12﹣02=1=1+0;22﹣12=3=2+1;32﹣22=5=3+2;42﹣32=7=4+3,∴(n+1)2﹣n2=(n+1)+n=2n+1.故答案为:(n+1)2﹣n2=2n+1.【点评】本题考查了数字变化的规律.关键是观察等式左边两底数的关系及等式右边的结果与等式左边两底数的关系.17.如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为5.【考点】相似三角形的判定与性质.【分析】先根据平行线分线段成比例求出BF:AE的值,再根据D是AC的中点得到CF与AE相等,列出等式求解即可.【解答】解:∵AE∥BC∴△AEG∽△BFG∴BG:GA=3:1=BF:AE∵D为AC边上的中点∴AE:CF=1:1∴AE=CF∴BF:AE=(CF+BC):AE=3:1∴(AE+10):AE=3:1解得:AE=5.【点评】本题主要利用三角形的相似及中点的性质求AE的值.18.为抵御百年不遇的洪水,某市政府决定将1200m长的大堤的迎水坡面铺石加固,堤高DF=4m,堤面加宽2m,则完成这一工程需要的石方数为144000m3【考点】解直角三角形的应用-坡度坡角问题.【分析】由题意可知,要求的石方数其实就是横截面为ABCD的立方体的体积.那么求出四边形ABCD的面积即可.【解答】解:∵Rt△BFD中,∠DBF的坡度为1:2,∴BF=2DF=8,∴S△BDF=BF×FD÷2=16.∵Rt△ACE中,∠A的坡度为1:2.5,∴CE:AE=1:2.5,CE=DF=4,AE=10.S梯形AFDC=(AE+EF+CD)×DF÷2=28.∴S四边形ABCD=S梯形AFDC﹣S△BFD=12.那么所需的石方数应该是12×12000=144000(立方米),故答案为:144000.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.19.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为(,).【考点】翻折变换(折叠问题);坐标与图形性质.【分析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).【点评】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.20.下面是我们将在高中阶段所要学习的一个内容,请先阅读这段内容.再解答问题,三角函数中常用公式sin(α+β)=sinαcosβ+cosαsinβ,.求sin75°的值,即sin75°=sin(30°+45°)=sin30°os45°+cos30°sin45°=.试用公式cos(α+β)=cosαsinβ﹣sinαcosβ,求出cos75°的值是﹣.【考点】特殊角的三角函数值.【分析】将75°化为30°和45°两个特殊角,然后根据特殊角的三角函数值来解答.【解答】解:cos(α+β)=cosαcosβ﹣sinαsinβ,=cos(30°+45°)=cos30°cos45°﹣sin30°sin45°=×﹣=﹣,故答案为:﹣.【点评】本题考查了特殊角的三角函数值,解答此题要熟记特殊角的三角函数值,并能把“新定义”的问题转化为已知问题解答.三、计算题:21.计算:﹣+﹣﹣|1﹣2|﹣(﹣3)0.【考点】二次根式的混合运算;零指数幂.【专题】计算题.【分析】根据分母有理化、去绝对值、零指数幂可以解答本题.【解答】解:﹣+﹣﹣|1﹣2|﹣(﹣3)0=﹣+﹣(﹣1)﹣(2﹣1)﹣1=﹣+﹣1﹣+1﹣2+1﹣1=﹣2.【点评】本题考查二次根式的混合运算、零指数幂,解题的关键是明确二次根式的混合运算的计算方法,知道除零以外任何数的零次幂都等于1.22.cos30°+sin245°cos60°﹣﹣tan45°.【考点】特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及乘方的意义计算即可得到结果.【解答】解:cos30°+sin245°cos60°﹣﹣tan45°=+()2×﹣+1﹣1=﹣.【点评】此题考查了特殊角的三角函数值,实数的运算,熟练掌握运算法则是解本题的关键.四、解答题23.如图,已知梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线AC平分∠BCD,且梯形周长为20厘米,求AC的长.【考点】梯形.【分析】由已知可得梯形ABCD是等腰梯形,根据等腰梯形的性质及已知可求得AB、BC的长,再由勾股定理求得AC的长即可,【解答】解:∵在梯形ABCD中,AB=DC,∴梯形ABCD是等腰梯形,∴∠D+∠DCB=180°,∵∠D=120°,∴∠B=∠DCB=60°,∵对角线CA平分∠BCD,∴∠ACB=30°,∵AD=DC,∴∠DAC=∠ACD=30°,∴∠BAC=90°,∴BC=2AB,∵梯形的周长=AD+DC+BC+AB=5AB=20,∴AB=4,BC=8,∴AC===4(cm).【点评】此题主要考查学生对等腰梯形的性质及勾股定理的综合运用能力,关键是弄清各边之间的关系,从而根据周长求得各边的长.24.如图,在矩形ABCD中,AB<BC,M是BC的中点,DE⊥AM于点E,且AB、BC的长是一元二次方程x2﹣7x+12=0的两根,求△DEM的面积.【考点】矩形的性质;解一元二次方程-因式分解法.【分析】先求出方程的解,求出AB、BC,根据勾股定理求出AM,证△DEA∽△ABM,得出比例式,求出DE和AE,即可求出答案.【解答】解:解方程x2﹣7x+12=0得:x=3或4,∵AB<BC,AB、BC的长是一元二次方程x2﹣7x+12=0的两根,∴AB=3,BC=4,∵四边形ABCD是矩形,M为BC的中点,∴AD=BC=4,BM=CM=2,∠B=90°,AD∥BC,∴∠DAE=∠AMB,由勾股定理得:AM==,∵DE⊥AM,∴∠DEA=∠B=90°,∴△DEA∽△ABM,∴==,∴==,解得:DE=,AE=,∴EM=AM﹣AE=﹣=,∴△DEM的面积为×DE×EM=××=.【点评】本题考查了解一元二次方程,勾股定理,相似三角形的性质和判定,矩形的性质的应用,能求出DE、AM的长是解此题的关键.25.如图,一艘轮船原在A处,它的北偏东45方向上有一灯塔P,轮船沿着北偏西30方向航行4小时到达B处,这时灯塔P正好在轮船的正东方向上,已知轮船的速度为25海里/时.求轮船在B处时与灯塔P的距离(结果保留根号).【考点】解直角三角形的应用-方向角问题.【分析】可做AC⊥BP,从而构造两个直角三角形,再根据特殊角的三角函数值解答即可.【解答】解:作AC⊥BP,在Rt△ABC中,∠BAC=30°,AB=25×4=100,∴BC=50,AC=50,在Rt△ACP中,∠CAP=∠APC=45°,∴CP=AC=50.∴BP=BC+CP=50+50.答:轮船在B处时与灯塔P的距离为(50+50)海里.【点评】本题主要考查方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.26.某自然景区有一块长12米,宽8米的矩形花圃(如图所示),喷水无安装在矩对角线的交点P上,现计算从P点引3条射线,把花圃分成面积相等的三部分,分别种植三种不同的花,如果不考虑分不分的间隙.(1)请你设计出符合题意方案示意图(只要求画出图形,至少设计两个方案);(2)直接写出三条射线与矩形的有关边的交点位置;(3)试判断设计的方案中,所画出的三个面积相等的图形是否位似?【考点】作图—应用与设计作图;位似变换.【分析】(1)将长方形的四个边均三等分,将三等分点都与中心点连接,这样就做成了12个等面积的小三角形,把它们任意相邻的四个组合在一起即可;(2)根据各点为正方形边长的三等分点即可得出结论;(3)根据三个图形的边长即可得出结论.【解答】解:(1)如图所示.射线PE,PF及PB即为所求;(2)∵点E为线段AD的三等分点,点F为线段CD的三等分点,AD=12米,CD=8米,∴AE=×12=4米,CF=×8=米,∴点E在距点A4米处;点F在距点C米处;点B为矩形的顶点;(3)由图可知,所画出的三个面积相等的图形不相似.【点评】本题考查的是作图﹣应用与设计作图,熟知矩形的性质是解答此题的关键.27.(•沈阳)一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:方法一第一次第二次3453(3,3)(3,4)(3,5)4(4,3)(4,4)(4,5)5(5,3)(5,4)(5,5);方法二因此,能组成的两位数有:33、34、35、43、44、45、53、54、55,∵组成的两位数有9个,其中,十位上数字与个位上数字之和为9的两位数有两个,∴P(十位上数字与个位上数字之和为9的两位数)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题28.已知关于x的方程(k﹣1)x2+(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论