版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3中心对称素养目标技能目标知识目标通过具体实例理解中心对称和中心对称图形的概念。理解中心对称的基本性质。学生经历与中心对称有关的图形的观察、分析、欣赏以及画图等过程,进一步体会旋转变换的数学思想。通过学生所熟悉的生活现象的观察以及旋转对称知识的学习,培养学生审美和欣赏水平。教学重点教学难点探索成中心对称的两个图形的基本性质和识别中心对称图形。探索图形之间的变化关系,发展分析图形的能力,熟练地画出已知图形关于某一点成中心对称的图形。思考1:观察图甲,图(1)经过怎样的运动变化就可以与图(2)重合?观察图乙,再试一试.甲乙思考2:观察下列图形的运动,说一说它们有什么共同点..
重合OAODBC旋转角为180°
你能否描述一下你的新发现?1.中心对称是一种特殊的旋转.其旋转角是180°.
把一个图形
,如果它
,那么就说这两个图形关于这个点
或
,这个点叫做
.这两个图形在旋转后能重合的对应点叫做关于对称中心的对称点.绕着某一点旋转180°能够与另一个图形重合对称中心对称对称中心(简称中心)
你能否描述一下你的新发现?2.中心对称是两个图形之间一种特殊的位置关系.“两个图形关于一个点对称”可以简称为“两个图形成中心对称”.例1如图,△OCD与△OAB关于点O中心对称,则____是对称中心,点A与_____是对称点,点B与____是对称点.OBCADOCD下图中△A′B′C′与△ABC关于点O是成中心对称,你能从图中找到哪些等量关系?找一找A′B′C′ABCO(1)OA=OA′、OB=OB′、OC=OC′(2)△ABC≌△A′B′C′①成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(即对称点与对称中心三点共线)∵△ABC与△A′B′C′关于点o成中心对称图形∴OA=OA′、OB=OB′、OC=OC′∵△ABC与△A′B′C′关于点o成中心对称图形∴△ABC≌△A′B′C′②中心对称的两个图形是全等形;中心对称的性质:几何符号语言:A′B′C′ABCOA′B′C′ABCO中心对称与轴对称的联系与区别区别轴对称中心对称123有对称轴---直线有一个对称中心---点图形沿轴对折(翻转)1800图形绕中心旋转1800翻转后和另一个图形重合旋转后和另一个图形重合已知A点和O点,你能画出点A关于点O的对称点A'吗?例2AOA'作法:连结OA,并延长到A',使OA'=OA,则A'是所求的点已知线段AB和O点,画出线段AB关于点O的对称线段A'B'.例3OAB作法:连结AO并延长到A',使OA'=OA,则得A的对称点A'.A'连结BO并延长到B',使OB'=OB,则得B的对称点B'.B'连结A'B',则线段A'B'是所画线段.如图,已知四边形ABCD和点O,试画出四边形ABCD关于点O成中心对称的图形A'B'C'D'.例4分析:要画出四边形ABCD关于点O成中心对称的图形,只要画出A,B,C,D四点关于点O的对称点,再顺次连接各对应点即可.OABCDO作法:1.连接AO并延长到A',使OA'=OA,得到点A的对应点A';A'B'C'D'2.同理,可作出点B,C,D的对应点B',C',D';3.顺次连接A',B',C',D',则四边形A'B'C'D'即为所作.根据中心对称的性质作已知图形关于某点中心对称的图形的关键是作出某些特殊点的对应点.作图步骤:(1)连接原图形上的特殊点和对称中心;(2)再将以上各线段延长找对应点,使得特殊点与对称中心的距离和其对应点与对称中心的距离相等;(3)将对应点按原图形的形状连接起来,即可得出原图形关于某点中心对称的图形.这些图形有什么共同特征?议一议
把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.
中心对称图形的定义注意:中心对称图形是指一个图形.下面哪些图形是中心对称图形?✔1.✔✘✔下面扑克牌中,哪些牌的牌面是中心对称图形?2.✘✔✘✔✘如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.3.解析:由于矩形是中心对称图形,所以依题意可知△BOF与△DOE关于点O成中心对称,由此图中阴影部分的三个三角形就可以转化到直角△ADC中,易得阴影部分的面积为3.3中心对称和中心对称图形概念旋转角是180°性质对应点的连线经过对称中心,且被对称中心平分作图应用1:作中心对称图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论