




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省兰州市市区片达标名校中考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1 B.x= C.x=﹣1 D.x=﹣2.下列实数0,,,π,其中,无理数共有()A.1个 B.2个 C.3个 D.4个3.若a与﹣3互为倒数,则a=()A.3 B.﹣3 C.13 D.-4.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为()A. B.4 C. D.5.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.6.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×10107.式子有意义的x的取值范围是()A.且x≠1 B.x≠1 C. D.且x≠18.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.49.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为()A.32° B.30° C.26° D.13°10.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<1;②a+b=1;③4ac﹣b2A.1B.2C.3D.411.下列运算中,计算结果正确的是()A.a2•a3=a6B.a2+a3=a5C.(a2)3=a6D.a12÷a6=a212.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.钓鱼岛周围海域面积约为170000平方千米,170000用科学记数法表示为______.14.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.15.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=______16.若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_____.17.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是_____.18.若a﹣3有平方根,则实数a的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某汽车专卖店销售A,B两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?20.(6分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有.∴.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得=,=;(2)利用所探索的结论,找一组正整数,填空:+=(+)2;(3)若,且均为正整数,求的值.21.(6分)先化简分式:(-)÷∙,再从-3、-3、2、-2中选一个你喜欢的数作为的值代入求值.22.(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.23.(8分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查的样本为,样本容量为;在频数分布表中,a=,b=,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?24.(10分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.25.(10分)计算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);26.(12分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.27.(12分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是,推断的数学依据是.(2)如图②,在△ABC中,∠B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距.(3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【题目详解】解:∵A在反比例函数图象上,∴可设A点坐标为(a,).∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.故选D.【题目点拨】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.2、B【解题分析】
根据无理数的概念可判断出无理数的个数.【题目详解】解:无理数有:,.故选B.【题目点拨】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.3、D【解题分析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,∴a=13故选C.考点:倒数.4、B【解题分析】
求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【题目详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【题目点拨】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.5、A【解题分析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.6、B【解题分析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.【题目详解】解:3.82亿=3.82×108,故选B.【题目点拨】本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.7、A【解题分析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.8、A【解题分析】根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.9、A【解题分析】
连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.【题目详解】连接OB,∵AB与☉O相切于点B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故选A.【题目点拨】本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.10、C【解题分析】①根据图象知道:a<1,c>1,∴ac<1,故①正确;②∵顶点坐标为(1/2,1),∴x="-b/2a"="1/2",∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2,1),∴4ac-b24a其中正确的是①②④.故选C11、C【解题分析】
根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【题目详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选:C.【题目点拨】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.12、B【解题分析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,当点Q在AD上时,PA=PQ,∴DP=AP=x,∴S=;当点Q在DC上时,PC=PQCP=4-x,∴S=;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【题目点拨】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解题分析】解:将170000用科学记数法表示为:1.7×1.故答案为1.7×1.14、36【解题分析】
10=a+b=(m-i)+(n-j)=(m+n)-(i+j)所以:m+n=10+i+j当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:m+n=10+2=12也就是:当m+n=12时,m·n最大是多少?这就容易了:m·n<=36所以m·n的最大值就是3615、【解题分析】
先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【题目详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=AB=,CD=AC-AD=m-=,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=,∵m>0,n>0,∴m=,∴,故答案为.【题目点拨】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.16、2【解题分析】
侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长.依此列出方程即可.【题目详解】设母线长为x,根据题意得2πx÷2=2π×5,解得x=1.故答案为2.【题目点拨】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大.17、2【解题分析】试题分析:由题意得,DE=CD2+CE2;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考点:不等式的性质点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键18、a≥1.【解题分析】
根据平方根的定义列出不等式计算即可.【题目详解】根据题意,得解得:故答案为【题目点拨】考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)A型车售价为18万元,B型车售价为26万元.(2)方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.【解题分析】
(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.【题目详解】解:(1)设A型车售价为x元,B型车售价为y元,则:解得:答:A型车售价为18万元,B型车售价为26万元.(2)设A型车购买m辆,则B型车购买(6-m)辆,∴130≤18m+26(6-m)≤140,∴:2≤m≤方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;∴方案二花费少【题目点拨】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.20、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【解题分析】
(1)∵,∴,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn.(2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案为1,2,1,2(答案不唯一).(3)由题意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n为正整数,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.21、;5【解题分析】
原式=(-)∙=∙=∙=a=2,原式=522、(1)-6;(2).【解题分析】
(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【题目详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上,∴,解得:;(2)由(1)知反比例函数解析式为,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【题目点拨】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.23、200名初中毕业生的视力情况200600.05【解题分析】
(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;(3)求出样本中视力正常所占百分比乘以5000即可得解.【题目详解】(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,故答案为200;(2)a=200×0.3=60,b=10÷200=0.05,补全频数分布图,如图所示,故答案为60,0.05;(3)根据题意得:5000×=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人.24、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解题分析】
(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【题目详解】(1)∵A(﹣4,0)在二次函数y=ax1﹣x+1(a≠0)的图象上,∴0=16a+6+1,解得a=﹣,∴抛物线的函数解析式为y=﹣x1﹣x+1;∴点C的坐标为(0,1),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m1﹣m+1),过点D作DH⊥x轴于点H,则DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化简,得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|yE|=|yC|=1,∴yE=±1.当yE=1时,解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴点E的坐标为(﹣3,1);当yE=﹣1时,解方程﹣x1﹣x+1=﹣1得,x1=,x1=,∴点E的坐标为(,﹣1)或(,﹣1);②若AC为平行四边形的一条对角线,则CE∥AF,∴yE=yC=1,∴点E的坐标为(﹣3,1).综上所述,满足条件的点E的坐标为(﹣3,1)、(,﹣1)、(,﹣1).25、(1)1;(2)2a+2【解题分析】
(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年01月共青团漯河市委所属事业单位引进高层次人才公开招聘1名笔试历年典型考题(历年真题考点)解题思路附带答案详解-1
- 马铃薯采购合同范本
- 注重培养学生的实践能力计划
- 体育场馆室内外标识导向系统施工考核试卷
- 服务质量评价体系构建考核试卷
- 个人时间管理的有效策略计划
- 晚期疾病患者的生命教育考核试卷
- 未来趋势基于虚拟现实技术的电影体验式产品设计
- 科技引领下的商业创新与变革
- 联想电脑购销合同范本
- 电网工程设备材料信息参考价(2024年第四季度)
- 2025年江苏农牧科技职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 部编人教版四年级下册道德与法治全册教案
- 中职学生日常行为规范主题班会讲稿
- 组织行为学13-组织文化
- 供应链管理课件第5章供应链合作伙伴选择与评价
- 餐饮店面投资预算(900平方米)
- 预应力工程施工质量验收标准
- 旅游资源规划与开发实训指导书
- 立体几何专题:距离和角
- DBJ-T01-43-2003_(北京)通用家庭居室装饰工程质量验收标准
评论
0/150
提交评论