2023-2024学年重庆市南岸区重庆南开融侨中学八上数学期末经典试题含解析_第1页
2023-2024学年重庆市南岸区重庆南开融侨中学八上数学期末经典试题含解析_第2页
2023-2024学年重庆市南岸区重庆南开融侨中学八上数学期末经典试题含解析_第3页
2023-2024学年重庆市南岸区重庆南开融侨中学八上数学期末经典试题含解析_第4页
2023-2024学年重庆市南岸区重庆南开融侨中学八上数学期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年重庆市南岸区重庆南开融侨中学八上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如果关于的分式方程无解,那么的值为()A.4 B. C.2 D.2.若是二次根式,则,应满足的条件是()A.,均为非负数 B.,同号C., D.3.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km,线路二全程90km,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h,则下面所列方程正确的是()A. B. C. D.4.等腰三角形一腰上的高与另一腰的夹角为,则这个等腰三角形的顶角度数为()A. B. C. D.或5.“121的平方根是±11”的数学表达式是()A.=11 B.=±11 C.±=11 D.±=±116.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.> D.m2>n27.9的算术平方根是()A.3 B. C.±3 D.±8.如果多项式分解因式的结果是,那么的值分别是()A. B. C. D.9.下列命题中,是真命题的是()A.0的平方根是它本身B.1的算术平方根是﹣1C.是最简二次根式D.有一个角等于60°的三角形是等边三角形10.下列代数式,,,,,,,,中,分式有()个.A.5 B.4 C.3 D.2二、填空题(每小题3分,共24分)11.若等腰三角形的一边,一边等于,则它的周长等于_____________.12.中,,,交于,交于,点是的中点.以点为原点,所在的直线为轴构造平面直角坐标系,则点的横坐标为________.13.分解因式:12a2-3b2=____.14.如果,则______.15.已知,则=________.16.若点M(a,﹣1)与点N(2,b)关于y轴对称,则a+b的值是_____17.一次函数,当时,,那么不等式的解集为__________.18.如图,某小区有一块长方形的花圃,有人为了避开拐角走捷径,在花圃内走出了一条路AB,已知AC=3m,BC=4m,他们仅仅少走了__________步(假设两步为1米),却伤害了花草.三、解答题(共66分)19.(10分)因式分解:(1)(2).20.(6分)如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:AE=DE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.21.(6分)化简求值:(1)已知,求的值.(2)已知,求代数式的值.22.(8分)计算或因式分解:(1)计算:(a2-4)÷;(2)因式分解:a(n-1)2-2a(n-1)+a.23.(8分)如图,在平面直角坐标系中,直线与轴,轴分别交于,两点,点为直线上一点,直线过点.(1)求和的值;(2)直线与轴交于点,动点在射线上从点开始以每秒1个单位的速度运动.设点的运动时间为秒;①若的面积为,请求出与之间的函数关系式,并写出自变量的取值范围;②是否存在的值,使得?若存在,请求出的值;若不存在,请说明理由.24.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b)(1)求b,m的值(2)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值25.(10分)在平面直角坐标系中,为原点,点,点,把绕点逆时针旋转,得,点旋转后的对应点为、,记旋转角为.如图,若,求的长.26.(10分)某商贸公司有、两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)型商品1.81.5型商品21(1)已知一批商品有、两种型号,体积一共是21立方米,质量一共是11.5吨,求、两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费611元;②按吨收费:每吨货物运输到目的地收费211元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?

参考答案一、选择题(每小题3分,共30分)1、B【分析】先解方程,去分母,移项合并得x=-2-m,利用分式方程无解得出x=2,构造m的方程,求之即可.【详解】解关于的分式方程,去分母得m+2x=x-2,移项得x=-2-m,分式方程无解,x=2,即-2-m=2,m=-4,故选择:B.【点睛】本题考查分式方程无解问题,掌握分式方程的解法,会处理无解的问题,一是未知数系数有字母,让系数为0,一是分式方程由增根.2、D【分析】根据二次根式有意义的条件解答即可.【详解】解:∵是二次根式,∴,故选D.【点睛】本题考查了二次根式的定义,熟练掌握二次根式成立的条件是解答本题的关键,形如的式子叫二次根式.3、A【分析】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h,则在线路二上行驶的平均速度为1.8xkm/h,由题意得:,故选A.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.4、D【分析】首先想到等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况所以舍去不计,我们可以通过画图来讨论剩余两种情况.【详解】解:①当为锐角三角形时可以画图,高与另一边腰成40°夹角,由三角形内角和为180°可得,三角形顶角为50°②当为钝角三角形时可以画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,则三角形的顶角为130°.综上,等腰三角形顶角度数为或故选:D.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键,难度适中.5、D【分析】根据平方根定义,一个a数平方之后等于这个数,那么a就是这个数的平方根.【详解】±=±11,故选D.【点睛】本题考查了平方根的的定义,熟练掌握平方根的定义是解题的关键.6、D【解析】试题分析:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选D.【考点】不等式的性质.7、A【分析】根据算术平方根的定义即可得到结果.【详解】解:∵32=9∴9的算术平方根是3,故选:A.【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.8、D【分析】根据十字相乘法的分解方法和特点可知:,.【详解】∵多项式分解因式的结果是,

∴,,

∴,.

故选:D.【点睛】本题主要考查十字相乘法分解因式,型的式子的因式分解.这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;可以直接将某些二次项的系数是1的二次三项式因式分解:.9、A【分析】根据平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定逐一分析即可【详解】解:A、0的平方根是它本身,本选项说法是真命题;B、1的算术平方根是1,本选项说法是假命题;C、不是最简二次根式,本选项说法是假命题;D、有一个角等于60°的等腰三角形是等边三角形,本选项说法是假命题;故选:A.【点睛】本题考查了平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定,熟练掌握相关知识是解题的关键10、A【分析】根据分式的定义逐个判断即可.形如(A、B是整式,B中含有字母)的式子叫做分式.【详解】解:分式有:,,﹣,,,共5个,故选:A.【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.二、填空题(每小题3分,共24分)11、16或1【分析】由等腰三角形的定义,可分为两种情况进行分析,分别求出周长即可.【详解】解:根据题意,则当5为腰时,有周长为:5+5+6=16;当6为腰时,有周长为:6+6+5=1;故答案为:16或1.【点睛】本题考查了等腰三角形的定义,解题的关键是熟练掌握等腰三角形的定义,注意运用分类讨论的思想进行解题.12、【分析】连接DE,过E作EH⊥OD于H,求得∠EDO=45°,即可得到Rt△DEH中,求得DH,进而得出OH,即可求解.【详解】如图所示,连接,过作于,于,于,是的中点,,,,,,,,中,,,点的横坐标是.【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.13、3(2a+b)(2a-b)【解析】12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。14、【分析】把分式方程变为整式方程,然后即可得到答案.【详解】解:∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了解分式方程,熟练把分式方程转化为整式方程是解题的关键.15、【分析】根据幂的乘方与积的乘方运算法则解答即可.【详解】∵,,∴;故答案为:.【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数的幂相除,底数不变,指数相减.16、-1【解析】试题解析:∵点M(a,﹣1)与点N(2,b)关于y轴对称,∴a=﹣2,b=﹣1,∴a+b=(﹣2)+(﹣1)=﹣1.故答案为﹣1.17、【解析】解不等式ax+b≥0的解集,就是求一次函数y=ax+b的函数值大于或等于0时自变量的取值范围.【详解】∵不等式ax+b⩾0的解集,就是一次函数y=ax+b的函数值大于或等于0时,当y<0的解集是x<,∴不等式ax+b⩾0的解集是x⩾.故答案为:x⩾.【点睛】本题考查了一次函数与一元一次不等式,属于基础题,关键掌握解不等式ax+b>0的解集,就是求一次函数y=ax+b的函数值大于或等于0时自变量的取值范围,认真体会一次函数与一元一次不等式之间的内在联系.18、1【分析】根据勾股定理求得AB的长,再进一步求得少走的步数即可.【详解】解:在Rt△ABC中,AB2=BC2+AC2,则AB=m,∴少走了2×(3+1−5)=1步,故答案为:1.【点睛】此题考查了勾股定理的应用,求出AB的长是解题关键.三、解答题(共66分)19、(1);(2).【分析】(1)先提取公因式,再利用平方差公式,即可分解因式;(2)先提取公因式,再利用完全平方公式,即可分解因式.【详解】(1)原式;(2)原式.【点睛】本题主要考查分解因式,掌握提取公因式法,平方差公式以及完全平方公式,是解题的关键.20、(1)见解析;(2)65°【分析】(1)根据BE平分∠ABC,可以得到∠ABE=∠DBE,然后根据题目中的条件即可证明△ABE和△DBE全等,从而可以得到结论成立;(2)根据三角形内角和求出∠ABC=30°,根据角平分线的定义求出∠CBE=15°,,然后根据外角的性质可以得到∠AEB的度数.【详解】(1)证明:∵BE平分∠ABC,∴∠ABE=∠DBE,在△ABE和△DBE中,,∴△ABE≌△DBE(SAS),∴AE=DE;(2)∵∠A=100°,∠C=50°,∴∠ABC=30°,∵BE平分∠ABC,∴∠ABE=∠DBE,∴∠CBE=15°,∴∠AEB=∠C+∠CBE=50°+15°=65°.【点睛】本题考查全等三角形的判定与性质、角平分线的定义,以及三角形外角的性质,解答本题的关键是明确题意,利用全等三角形的判定和性质解答.21、(1)3;(2)-11【分析】(1)根据整式乘法先化简,再代入已知值计算;(2)根据整式乘法先化简,把变形可得,再代入已知值计算.【详解】(1)===2x+1当原式=2+1=3(2)==因为所以,所以原式=-6-5=-11【点睛】考核知识点:整式化简求值.掌握整式的运算法则,特别乘法公式是关键.22、(1)原式=a2-2a;(2)原式=a(n-2)2.【解析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解;(2)首先提取公因式a,再利用完全平方公式分解因式得出答案.试题解析:(1)原式=(a+2)(a-2)=a(a-2)=a2-2a;(2)原式=a[(n-1)2-2(n-1)+1]=a(n-1-1)2=a(n-2)2.23、(1),;(2)①;②的值为4或1.【分析】(1)把点代入直线中求得点C的坐标,再将点C的坐标代入直线即可求得答案;(2)①先求得点、的坐标,继而求得的长,分两种情况讨论:当、时分别求解即可;②先求得,再根据①的结论列式计算即可.【详解】(1)把点代入直线中得:,∴点C的坐标为,∵直线过点C,∴,∴;故答案为:2,;(2)由(1)得,令,则,∵直线与轴交于A,令,,则点的坐标,∴,①当时,,,当时,,,∴综上所述,;②存在,理由如下:∵,①当时,,∴解得:;②当时,,∴,解得:;∴综上所述,的值为4或1时,使得.【点睛】本题考查的是一次函数综合运用,涉及到三角形的面积计算,要注意分类求解,避免遗漏.24、(1)-1;(2)或.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论