2023-2024学年浙江省宁波市奉化区溪口中学数学八上期末综合测试模拟试题含解析_第1页
2023-2024学年浙江省宁波市奉化区溪口中学数学八上期末综合测试模拟试题含解析_第2页
2023-2024学年浙江省宁波市奉化区溪口中学数学八上期末综合测试模拟试题含解析_第3页
2023-2024学年浙江省宁波市奉化区溪口中学数学八上期末综合测试模拟试题含解析_第4页
2023-2024学年浙江省宁波市奉化区溪口中学数学八上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江省宁波市奉化区溪口中学数学八上期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知关于x的一次函数y=(2﹣m)x+2的图象如图所示,则实数m的取值范围为()A.m>2 B.m<2 C.m>0 D.m<02.如图,圆的直径为1个单位长度,圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动一周,点A到达的位置,则点表示的数是()A. B. C. D.3.设A=(x−2)(x−3),B=(x−1)(x−4),则A、B的关系为()A.A>B B.A<B C.A=B D.无法确定4.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A.AE⊥BC B.BE=CE C.∠ABD=∠DBE D.△ABD≌△ACD5.已知,则下列变形正确的是()A. B. C. D.6.如图,中的周长为.把的边对折,使顶点和点重合,折痕交于,交于,连接,若,则的周长为__________;A.. B.. C.. D..7.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.在下列四个标志图案中,轴对称图形是()A. B. C. D.9.下列函数中,自变量x的取值范围是x≥3的是()A. B. C. D.10.若,则的值为()A. B.1 C.-1 D.-511.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1、2、3 B.2、3、6 C.4、6、8 D.5、6、1212.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形,图2中,的大小是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,∠A=40°,点D为AB的延长线上一点,且∠CBD=120°,则∠C=_____.14.若的3倍与2的差是负数,则可列出不等式______.15.如图,已知的面积为,平分,且于点,则的面积是____________.16.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是_____.17.如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.18.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.三、解答题(共78分)19.(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?20.(8分)如图①所示是一个长为,宽为的长方形,沿图中虚线用剪刀均分成相等个小长方形.然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①;方法②;(3)观察图②,写出,,这三个代数式之间的等量关系:;(4)根据(3)题中的等量关系,解决如下问题:若,,求的值?21.(8分)小明和爷爷元旦登山,小明走较陡峭的山路,爷爷走较平缓的步道,相约在山顶会合.已知步道的路程比山路多700米,小明比爷爷晚出发半个小时,小明的平均速度为每分钟50米.图中的折线反映了爷爷行走的路程y(米)与时间x(分钟)之间的函数关系.(1)爷爷行走的总路程是_____米,他在途中休息了_____分钟,爷爷休息后行走的速度是每分钟_____米;(2)当0≤x≤25时,y与x的函数关系式是___;(3)两人谁先到达终点?这时另一个人离山顶还有多少米?22.(10分)如图,等腰中,,,点、分别在边、的延长线上,,过点作于点,交于点.(1)若,求的度数;(2)若.求证:.23.(10分)已知,如图,在中,是的中点,于点,于点,且.求证.完成下面的证明过程:证明:∵,(______)∴(______)∵是的中点∴又∵∴(______)∴(______)∴(______)24.(10分)如图,在▱ABCD中,E、F分别是BC、AD边上的点,且∠1=∠1.求证:四边形AECF是平行四边形.25.(12分)小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点为的中点时,如图(2),确定线段与的大小关系,请你写出结论:_____(填“”,“”或“”),并说明理由.(2)特例启发,解答题目:解:题目中,与的大小关系是:_____(填“”,“”或“”).理由如下:如图(3),过点作EF∥BC,交于点.(请你将剩余的解答过程完成)(3)拓展结论,设计新题:在等边三角形中,点在直线上,点在直线上,且,若△的边长为,,求的长(请你画出图形,并直接写出结果).26.如图,,平分,于,交于,若,则______.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据一次函数的增减性即可列出不等式,解不等式即可.【详解】由图可知:1﹣m>0,∴m<1.故选B.【点睛】此题考查的是一次函数图像及性质,掌握一次函数图像及性质与一次项系数的关系是解决此题的关键.2、D【解析】先求出圆的周长,再根据数轴的特点进行解答即可.【详解】∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是-π-1;当圆向右滚动时点A′表示的数是π-1.故选:D.【点睛】本题考查的是实数与数轴的特点,熟知实数与数轴上的点是一一对应关系是解答此题的关键.3、A【解析】利用作差法进行解答即可.【详解】∵A-B=x-2x-3-(x-1)(x-4)=x2-5x+6-(x2-5x+4)=x2-5x+6-x2+5x-4=2∴A>B.故选A.【点睛】本题考查了整式的混合运算,熟练运用作差法比较大小是解决问题的关键.4、C【分析】根据等腰三角形的性质以及三角形全等的判定定理,逐一判断选项,即可.【详解】∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;∴BE=CE,故选项B正确;在△ABD和△ACD中,∵,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.【点睛】本题主要考查等腰三角形的性质以及三角形全等的判定定理,掌握等腰三角形三线合一,是解题的关键.5、D【分析】根据不等式的基本性质,逐一判断选项,即可.【详解】∵,∴,∴A错误;∵,∴,∴B错误;∵,∴,∴C错误;∵,∴,∴D正确,故选D.【点睛】本题主要考查不等式的基本性质,特别要注意,不等式两边同乘以一个负数,不等号要改变方向.6、A【分析】由折叠可知DE是线段AC的垂直平分线,利用线段垂直平分线的性质可得结论.【详解】解:由题意得DE垂直平分线段AC,中的周长为所以的周长为22.故答案为:22.【点睛】本题考查了线段垂直平分线的性质,灵活利用线段垂直平分线上的点到线段两端的距离相等这一性质是解题的关键.7、A【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.8、B【解析】沿着一条直线折叠后两侧能够完全重合的图形是轴对称图形,根据定义判断即可.【详解】A不是轴对称图形,不符合题意;B是轴对称图形,符合题意;C不是轴对称图形,不符合题意;D不是轴对称图形,不符合题意;故选:B.【点睛】本题考查轴对称图形的识别,熟记定义是解题的关键.9、D【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使各函数在实数范围内有意义,必须:A、分式有意义,x﹣1≠0,解得:x≠1;B、二次根式和分式有意义,x﹣1>0,解得x>1;C、函数式为整式,x是任意实数;D、二次根式有意义,x﹣1≥0,解得x≥1.故选D.10、B【分析】先将变形为,即,再代入求解即可.【详解】∵,∴,即,∴.故选B.【点睛】本题考查分式的化简求值,解题的关键是将变形为.11、C【分析】根据三角形的两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:1+2=3,两边之和等于第三边,故选项A错误;选项B:2+3=5<6,两边之和小于第三边,故选项B错误;选项C:符合三角形的两边之和大于第三边,两边之差小于第三边,故选项C正确;选项D:5+6=11<12,两边之和小于第三边,故选线D错误;故选:C.【点睛】本题考查三角形的三边之间的关系,属于基础题,熟练掌握三角形的三边之间的关系是解决本题的关键.12、B【分析】根据多边形内角和公式可求出∠ABC的度数,根据等腰三角形的性质求出∠BAC的度数即可.【详解】∵ABCDE是正五边形,∴∠ABC=×(5-2)×180°=108°,∵AB=BC,∴∠BAC=×(180°-108°)=36°,故选B.【点睛】本题考查了多边形内角和及等腰三角形的性质,熟练掌握多边形内角和公式是解题关键.二、填空题(每题4分,共24分)13、80°【分析】根据三角形的外角定理即可求解.【详解】由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故答案为80°【点睛】此题主要考查三角形的外角定理,解题的关键熟知三角形的外角性质.14、【分析】根据题意即可列出不等式.【详解】根据题意得故答案为:.【点睛】此题主要考查列不等式,解题的关键是根据题意找到不等关系.15、9【分析】延长AP交BC于D点,可证△APB≌△DPB,可得AP=PD,△APC的面积等于△CPD的面积,利用面积的加减可得△BPC的面积是△ABC面积的一半.【详解】延长AP交BC于D点,∵平分,且∴∠APB=∠DPB,∠APB=∠BPD=90°又BP=BP∴△APB≌△DPB(ASA)∴AP=PD,S△APB=S△BPD∴S△APC=S△PCD∴S△APB+S△APC=S△BPD+S△PCD∴S△BPC==9故答案为:9【点睛】本题考查的是三角形的全等及三角形的面积,掌握等底等高的三角形面积相等是关键.16、【分析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断△P1OP2是等腰直角三角形,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,进而得出∠EPF=90°,最后依据勾股定理列方程,即可得到EF的长度.【详解】∵P,P1关于直线OA对称,P、P2关于直线OB对称,∴OP=OP1=OP2=,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=90°,∴△P1OP2是等腰直角三角形,∴P1P2==2,设EF=x,∵P1E==PE,∴PF=P2F=-x,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,∴∠EPF=90°,∴PE2+PF2=EF2,即()2+(-x)2=x2,解得x=.故答案为.【点睛】本题考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题,依据勾股定理列方程求解.17、【分析】

【详解】顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;…故第n个正方形周长是原来的,以此类推:正方形A8B8C8D8周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴按此方法得到的四边形A8B8C8D8的周长为,故答案为.18、13【解析】试题分析:已知DE是AB的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.三、解答题(共78分)19、(1);(2)80米/分;(3)6分钟【分析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,

(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,

(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:

设线段AB的表达式为:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即线段AB的表达式为:y=-20x+320(4≤x≤16),

(2)又线段OA可知:甲的速度为:=60(米/分),

乙的步行速度为:=80(米/分),

答:乙的步行速度为80米/分,

(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),

与终点的距离为:2400-960=1440(米),

相遇后,到达终点甲所用的时间为:=24(分),

相遇后,到达终点乙所用的时间为:=18(分),

24-18=6(分),

答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.20、(1)m﹣n;(2)(m﹣n)2;(m+n)2﹣4mn;(3)(m﹣n)2=(m+n)2﹣4mn;(4)1.【分析】(1)平均分成后,每个小长方形的长为m,宽为n.由图可知阴影正方形的边长=小长方形的长-宽;(2)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(3)根据(2)中表示的结果可求解;(4)利用(a-b)2=(a+b)2-4ab可求解.【详解】解:(1)图②中的阴影部分的正方形的边长等于m﹣n;故答案为:m﹣n;(2)图②中阴影部分的面积:(m﹣n)2;图②中阴影部分的面积:(m+n)2﹣4mn;故答案为:(m﹣n)2;(m+n)2﹣4mn;(3)根据图②,可得(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为:(m﹣n)2=(m+n)2﹣4mn;(4)∵a﹣b=6,ab=5,∴(a+b)2=(a﹣b)2+4ab=62+4×5=36+20=1.【点睛】本题考查了完全平方那个公式的几何背景,解决问题的关键是读懂题意,找到所求的量的等量关系.21、(1)1700,10,35;(2)y=40x;(3)小明先到,这时爷爷离开山顶还有175米【分析】(1)根据图象信息即可求解;(2)根据待定系数法即可求解;(3)先求出小明花的时间,比较即可得出结论,然后根据爷爷的速度即可求得离山顶的距离.【详解】解:(1)根据图象知:爷爷行走的总路程是1700米,他在途中休息了10分钟,爷爷休息后行走的速度是:35米/分钟;(2)设函数关系式为可得:解得:∴函数关系式为:y=40x;(3)(分钟),(分钟)所以,从爷爷出发开始计时,小明50分钟到达山顶.因为爷爷用了55分钟,所以小明先到.这时爷爷离终点还有(55-50)×35=175(米)答:小明先到,这时爷爷离山顶还有175米.【点睛】此题主要考查观察函数图象和待定系数法求正比例函数解析式,正确读出函数图象的信息是解题关键.22、(1);(2)见解析【分析】(1)在△CDE中根据等腰三角形的性质和三角形内角和定理得到∠ECD的度数.在△ACD中,根据三角形外角的性质即可得出结论;(2)在△CDE中,根据等腰三角形的性质得到∠ECD=∠CED,进而得到∠ECD+∠CDB=90°.由∠ECD+∠DCB=90°,得到∠DCB=∠BDC.由∠DCB+∠BDC=∠ABC=45°,得到∠DCB=∠BDC=22.5°,得到∠ECD=∠CED=67.5°,得到∠EDC=45°.由EF⊥DC于点F,得到∠DEF=∠EDC=45°,即有EF=DF,∠EDG=∠EGD=67.5°,根据等角对等边得到EG=ED,等量代换得到EG=DC,即可得到结论.【详解】∵等腰中,,,∴.又∵CD=DE,,∴,∴;(2)∵CD=DE,∴.又∵,∴.∵,∴.∵,∴,∴,∴.∵于点,∴,∴,,∴,∴,∴,∴.【点睛】本题考查了等腰三角形的判定与性质.灵活运用等腰三角形的性质及三角形外角的性质是解答本题的关键.23、见解析【分析】根据题意,找出证明三角形全等的条件,利用HL证明Rt△BDE≌Rt△CDF,即可得到结论成立.【详解】解:∵DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD=90°(垂直的定义)∵D是BC的中点,∴BD=CD,又∵BE=CF,∴Rt△BDE≌Rt△CDF(HL)∴∠B=∠C(全等三角形的对应角相等)∴AB=AC(等角对等边).【点睛】本题考查了全

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论