版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年浙江省金华市八上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.估计的值在()A.2到3之间 B.3到4之间 C.4到5之间 D.5到6之间2.已知分式的值为0,那么x的值是()A.﹣1 B.﹣2 C.1 D.1或﹣23.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数()A.5个 B.4个 C.3个 D.2个4.下列命题是假命题的是A.同旁内角互补,两直线平行B.若两个数的绝对值相等,则这两个数也相等C.平行于同一条直线的两条直线也互相平行D.全等三角形的周长相等5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm6.如图,,,,则的长度为()A. B. C. D.7.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣18.下列各组数中,是方程的解的是()A. B. C. D.9.计算:()A.1 B. C.4 D.10.如果把分式中和都扩大10倍,那么分式的值()A.扩大2倍 B.扩大10倍 C.不变 D.缩小10倍二、填空题(每小题3分,共24分)11.计算:______.12.若无理数a满足1<a<4,请你写出一个符合条件的无理数________.13.如图,在△ABC中,AB=AC,BC=8,AD平分∠BAC,则BD=.14.若将三个数、、表示在数轴上,则其中被墨迹覆盖的数是_______.15.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为_____.16.用科学计数法表示为______17.如图所示,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为(________)18.如图1,在中,.动点从的顶点出发,以的速度沿匀速运动回到点.图2是点运动过程中,线段的长度随时间变化的图象.其中点为曲线部分的最低点.请从下面A、B两题中任选一作答,我选择________题.A.的面积是______,B.图2中的值是______.三、解答题(共66分)19.(10分)甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?20.(6分)如图,点是等边三角形的边上一点,交于,延长至,使,连结交于.(1)请先判断的形状,并说明理由.(2)请先判断和是否相等,并说明理由.21.(6分)因式分解:(1);(2).22.(8分)“金源”食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费用(元)与包装盒个数(个)满足图中的射线所示的函数关系;方案二:租赁机器自己加工,所需费用(元)(包括租赁机器的费用和生产包装盒的费用)与包装盒个数(个)满足图中射线所示的函数关系.根据图象解答下列问题:(1)点的坐标是_____________,方案一中每个包装盒的价格是___________元,射线所表示的函数关系式是_____________.(2)求出方案二中的与的函数关系式;(3)你认为选择哪种方案更省钱?请说明理由.23.(8分)问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.24.(8分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.25.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F是AC上的动点,BD=DF(1)求证:BE=FC;(2)若∠B=30°,DC=2,此时,求△ACB的面积.26.(10分)甲、乙两车分别从,两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到地,乙车立即以原速原路返回到地.甲、乙两车距B地的路程()与各自行驶的时间()之间的关系如图所示.(1)求甲车距地的路程关于的函数解析式;(2)求乙车距地的路程关于的函数解析式,并写出自变量的取值范围;(3)当甲车到达地时,乙车距地的路程为
参考答案一、选择题(每小题3分,共30分)1、B【分析】利用”夹逼法“得出的范围,继而也可得出+1的范围.【详解】∵4<6<9,∴,即,∴,故选B.2、B【解析】试题解析:分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到(x-1)(x+2)=0且-1≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据-1≠0,即可得到x的取值范围,由此即得答案.本题解析:∵的值为0∴(x-1)(x+2)=0且-1≠0.解得:x=-2.故选B.3、C【分析】根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【详解】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选:C.【点睛】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.4、B【解析】根据平行线的判定,绝对值和全等三角形的性质判断即可.【详解】A.同旁内角互补,两直线平行,是真命题;B.若两个数的绝对值相等,则这两个数相等或互为相反数,是假命题;C.平行于同一条直线的两条直线也互相平行,是真命题;D.全等三角形的周长相等,是真命题.故选B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5、C【分析】根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【详解】∵ED⊥AB,∠A=30°,∴AE=2ED.∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.【点睛】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.6、B【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可.【详解】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3(cm),故选:B.【点睛】本题考查全等三角形的性质,线段的和差定义等知识,解题的关键是熟练掌握基本知识.7、D【解析】因为函数与的图象相交于点A(m,2),把点A代入可求出,所以点A(-1,2),然后把点A代入解得,不等式,可化为,解不等式可得:,故选D.8、B【分析】将四个答案逐一代入,能使方程成立的即为方程的解.【详解】解:A.,故错误;B.,故正确;C.,故错误;D.,故错误.故选:B.【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键.9、A【分析】根据零指数幂的运算法则计算即可.【详解】故选:A.【点睛】本题主要考查零指数幂,掌握零指数幂的运算法则是解题的关键.10、C【分析】根据题意,将分式换成10x,10y,再化简计算即可.【详解】解:若和都扩大10倍,则,故分式的值不变,故答案为:C.【点睛】本题考查了分式的基本性质,解题的关键是用10x,10y替换原分式中的x,y计算.二、填空题(每小题3分,共24分)11、【分析】先计算积的乘方,再利用单项式除单项式法则计算.【详解】解:,故答案为:.【点睛】本题考查积的乘方公式,单项式除单项式.
单项式除以单项式,把单项式的系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.12、π【分析】估计一个无理数a满足1<a<4,写出即可,如π、等.【详解】解:∵1<a<4∴1<a<∴a=π故答案为:π.【点睛】此题考查估算无理数的大小,解题关键在于掌握其定义.13、1【分析】根据三线合一定理即可求解.【详解】解:∵AB=AC,AD平分∠BAC,∴BD=BC=1.故答案是:1.考点:等腰三角形的性质.14、【分析】首先利用估算的方法分别得到、、前后的整数(即它们分别在哪两个整数之间),从而可判断出被覆盖的数.【详解】解:∵-2<<-1,2<<3,3<<4,且墨迹覆盖的范围是1-3,∴能被墨迹覆盖的数是.故答案为:.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度不大.15、70°或40°或20°【分析】分三种情况:①当AC=AD时,②当CD′=AD′时,③当AC=AD″时,分别根据等腰三角形的性质和三角形内角和定理求解即可.【详解】解:∵∠B=50°,∠C=90°,∴∠BAC=90°-50°=40°,如图,有三种情况:
①当AC=AD时,∠ACD==70°;
②当CD′=AD′时,∠ACD′=∠BAC=40°;
③当AC=AD″时,∠ACD″=∠BAC=20°,
故答案为70°或40°或20°【点睛】本题考查等腰三角形的判定和性质以及三角形的内角和定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16、2.57×10−1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】=2.57×10−1.故答案为:2.57×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、30【分析】利用等腰三角形的性质可得出ABC的度数,再根据垂直平分线定理得出AD=BD,,继而可得出答案.【详解】解:DE垂直平分AB故答案为:30.【点睛】本题考查的知识点是等腰三角形的性质以及垂直平分线的性质,掌握以上知识点是解此题的关键.18、A.B.【解析】由图形与函数图像的关系可知Q点为AQ⊥BC时的点,则AQ=4cm,再求出AB=×3s=6cm,利用勾股定理及可求出BQ,从而求出BC,即可求出的面积;再求出的周长,根据速度即可求出m.【详解】如图,当AQ⊥BC时,AP的长度最短为4,即AQ=4,AB=×3s=6cm,∴BQ=∵∴BC=2BQ=4∴的面积为=;的周长为6+6+4=12+4∴m=(12+4)÷2=故答案为:A;或B;.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质及函数图像的性质.三、解答题(共66分)19、甲每小时做18个,乙每小时做12个零件.【分析】本题的等量关系为:甲每小时做的零件数量﹣乙每小时做的零件数量=6;甲做90个所用的时间=乙做60个所用的时间.由此可得出方程组求解.【详解】解:设甲每小时做x个零件,乙每小时做y个零件.由题意得:解得:,经检验x=18,y=12是原方程组的解.答:甲每小时做18个,乙每小时做12个零件.考点:二元一次方程组的应用;分式方程的应用.20、(1)等边三角形,证明见解析;(2),证明见解析.【分析】(1)根据等边三角形和平行线的性质,即可完成证明;(2)根据(1)的结论,结合,可得;再根据平行线性质,得,,从而得到,即可得到答案.【详解】(1)∵是等边三角形∴∵∴,∴∴是等边三角形;(2)∵是等边三角形∴∵∴∵∴,在和中∴∴.【点睛】本题考查了等边三角形、平行线、全等三角形的知识;解题的关键是熟练掌握等边三角形、平行线、全等三角形的性质,从而完成求解.21、(1);(2)【分析】(1)提公因式后,再利用平方差公式继续分解即可;(2)根据多项式乘多项式展开,合并后再利用完全平方公式分解即可.【详解】(1);(2).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22、(1),,;(2);(3)当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱,见解析【分析】(1)根据图像即可得出A的坐标,用价格=费用包装盒个数,假设出射线所表示的函数关系式是:,将A代入即可;(2)设的函数关系式是,把点,代入,求解即可得与的函数关系式;(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.【详解】解:(1)由图像可知:A,∴方案一中每个包装盒的价格是:(元),设射线所表示的函数关系式是:把A代入得:解得:∴;故答案为:,,.(2)设的函数关系式是.图象过点,解得.方案二中的函数表达式是.(3)当时,.(元)当需要包装盒个时,方案一和方案二所需钱数都是元;根据图象可知:当需要包装盒小于个时,选择方案一省钱:当需要包装盒大于个时,选择方案二省钱.【点睛】本题考查了一次函数的应用,解题的关键是从实际问题中整理出函数模型,并利用函数的知识解决实际问题.23、(1)证明见解析;(2)DE=BD+CE;(3)B(1,4)【分析】(1)证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;
(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答.【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠ADB=∠CEA=90°∵∠BAC=90°∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°∴∠CAE=∠ABD∵在△ADB和△CEA中∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE即:DE=BD+CE(2)解:数量关系:DE=BD+CE理由如下:在△ABD中,∠ABD=180°-∠ADB-∠BAD,
∵∠CAE=180°-∠BAC-∠BAD,∠BDA=∠AEC,
∴∠ABD=∠CAE,
在△ABD和△CAE中,∴△ABD≌△CAE(AAS)
∴AE=BD,AD=CE,
∴DE=AD+AE=BD+CE;(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,
由(1)可知,△AEC≌△CFB,
∴CF=AE=3,BF=CE=OE-OC=4,
∴OF=CF-OC=1,
∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.24、(1)证明见解析;(2)结论:BD=2CF.理由见解析;(3).【分析】(1)欲证明BF=AD,只要证明△BCF≌△ACD即可;(2)结论:BD=2CF.如图2中,作EH⊥AC于H.只要证明△ACD≌△EHA,推出CD=AH,EH=AC=BC,由△EHF≌△BCF,推出CH=CF即可解决问题;(3)利用(2)中结论即可解决问题.【详解】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BC=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25、(1)证明见解析;(2)6.【分析】(1)根据角平分线的性质可得DC=DE,利用HL可证明△DCF≌△DEB,可得BE=FC;(2)根据含30°角的直角三角形的性质可求出BD的长,即可求出BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理协会年度工作计划范文
- 《氨吸收式制冷机》课件
- 大班安全个人工作计划024开头
- 《氧化还原平衡修改》课件
- 《复试记账》课件2
- 《电路分析基 础》课件-西电第1章电路的基本元件及定律
- 《地理环境差异性》课件
- 《高血压与饮食》课件
- 图书合同签订流程
- 2025年北京货运驾驶从业资格考试
- 初三历史中考模拟试卷
- 德语四级真题2023
- 入世后黑色家电的产业分析与企业对策
- 2023年社保基金安全警示教育学习研讨会发言稿报告(4篇)
- 6 电气安全与静电防护技术
- GB/T 4087-2009数据的统计处理和解释二项分布可靠度单侧置信下限
- GB/T 35679-2017固体材料微波频段使用波导装置的电磁参数测量方法
- 安全用电课件【知识精讲+高效备课】 人教版九年级 物理教材精研课件
- 华中师范大学文学院《826语言文学综合考试》考试大纲
- 国开电大《个人理财》形考任务1-3试题及答案
- 未成年人需办银行卡证明(模板)
评论
0/150
提交评论