2023年度初三第一次月考试题_第1页
2023年度初三第一次月考试题_第2页
2023年度初三第一次月考试题_第3页
2023年度初三第一次月考试题_第4页
2023年度初三第一次月考试题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级第一次月考

数学试题

题号—■二总分

2122232425262728

得分

一.填空题(每题3分,总分值30分)

1.在函数,=虫土2中,自变量X的取值范围是.

3x-l

2.方程(X-Ip=4的解是.

4.某航空公司有假设干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条

航线,那么这个航空公司共有个飞机场.

5.关于x的方程(加+3)』a+3/nr+l=。是一■元二次方程贝!J加的值是.

6.假设x2+y2+4x+6y+13=0,贝ij而=.

7.矩形的一边为4,对角线长为5,那么以矩形相邻两边为根的一元二次方程

8.等腰BC=8,AB,AC的长是关于x的方程一一10%+加=0的两根,那

么m的值是.

9.2的整数部分上小数部分是4则?+2。的值是

b

10.直角三角形4?G中,假设N84G=3O",AB=1,

再以AG为直角边继续画含有30°角的直角三角形AC,C2……,

按照此规律可知第〃个直角三角形的斜边AC“=.

选择题(每题3分,总分值30分)(第10题图)/B

()11.以下计算正确的是

A.-a,B.J4a%=2cbJ2ab

()12.假设化简—J?—8x+16的结果为2%-5,那么x的取值范围是

A.x为任意实数B.1<x<4C.x>lI),x<4

()13.把化为最简二次根式,正确结果

A.yjb-aB.&i-bC.-y/b-aD.-&i-b

()14.近年来,全国房价不断上涨,某县2023年4月份的房价平均每平方米为3600

元,比2023年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的年平均增

长率均为X,那么关于x的方程为

A.(1+x)2=2000B.2000(1+xf=3600

C.(3600-2000Xl+x)=3600D.(3600—2000)(1+x)2=3600

)15.假设加是方程一+工一1=0的根,那么式子加+2疗+2007的值为

A.2007B.2023C.2023D.2023

()16.方程1x2-x-4=0的左边配成一个完全平方式后得到方程是

3

/3、238,3-38/3d57.,.

A.(x—-)——B.(x——)二—-C.(x——)——D.以上都不对

242424

)17.假设a、〃是关于x的方程为2+入;+"+1=()的两根,且a、b又是斜边为

1的直角三角形的两直角边长,那么人的值为().

A.5或-1B.3C.-lD.不存在

()18.如果关于x的方程(m-2)x2-2x+l=0有实数根,那么m的取值范围是

A.m<3B.mW3且mW2C.m<3且mW2D.mW3

19.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同

时出发,点P以3cm/s的速度向点B移动,一直到B为止,点Q以2cm/s的速度向点D移

动,P、Q两点从出发开始()秒后,D--------------------Q——C

点P、点Q间的距离是10cm.

AB

P

或空2(第19题图)

555

C3

5

20.反比例函数y—,当x>0时,y随x的增大而增大,那么关于x的方程

X

公2一2%+8=0的根的情况是().

A.有两个正根B.有两个负根C.有一个正数根和一个负数根D.无实数根

三、解答题:(总分值60分)

21.(6分)计算:

(1)(V3-V2)2°°8.(V3+V2)2°°7+V18x4-

⑵;,27丁+3孙椁

22.(8分)用适当方法解以下方程.

(1)/+4x—1=0

(2)(1-xXx+4)=(x-l)0-2x)

23.(6分)先化简,再求值:—1——x~+2x+1^^LL1,其中X=J5-2

x+2x+2x-1

24.(6分)设修,声是关于x的一元二次方程一+2以+。2+4。—2=0的两实根,当

。为何值时,无:+彳2?有最小值?最小值是多少?

25.(6分)将一等腰三角形沿腰上的高剪开,恰好得到两个直角三角形,其中一个直角三

角形的两直角边的长分别为3和4,求此等腰三角形的周长.

26.(8分)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10

万元时,可全部租出,每间的年租金每增加5000元,少租出商铺1间,该公司要为租出

的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.

(1)当每间商铺的年租金定为13万元时,能租出多少间?

(2)设每间商铺的年租金增加x万元,能租出的商铺为y间,那么y与x有怎样的函数

关系式(不要求写出自变量取值范围)?

(3)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金一各种费用)为

275万元?

27.(10分)某小区有一长100m,宽80m的空地,现将其建成花园广场,设计图案如下:

阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,

宽度不小于50m,不大于60m.(如图)预计活动区每平方米造价60元,绿化区每平方米

造价50元.

(1)设一块绿化区的边长为xm,写出工程总造价y与x的函数关系式(写出x的取值

范围);

(2)如果小区投资46.9万元,问能否完成工程任务,假设能,请写出x为整数的所有

工程方案;假设不能,请说明理由.[参考值:1.732)

28.(10分)如图,在平面直角坐标系中,AABC为正三角形,OB、。。的长分别是方

程》2一4x+3=0的两根(08<0。).

(1)确定形状;

(2)过。的直线OE交于点E,交AC于点F,且使AAEF和ACDb的面积相

等,求直线的函数解析式;

(3)在(2)的条件下,在坐标平面内是否存在点M,使以8、D、E、M为顶点

的四边形为平行四边形?假设存在,请直接写出点"的坐标;假设不存在,请说明理由.

答案

一.填空

1.x>-2JU#-2.3或T3.2血4.55.m=36/

3

6.而7.答案不唯一如一—7x+12=08.16或259.变4囱10.阿-

二.选择-

DCOBx

11.D12.B13.C14.D15.B-/16.C17.D18.D19.B20.C

三.解答题

21.(1)-----V2(2)y43x

2

22.[1)X|=A/5-20=—V5—2

(2)X,=1x2=5

x+2

24.解:由题意得—

25.10+26或10+或竺

3

26.解:⑴•.•30000+5000=6,.•.能租出30—6=2“吼

(2)y=30—2x

(3)

每间商铺的年租金定为10.5万元或15万元。

27.解:(1)•.•

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论