专题24.14 圆章末十大题型总结(拔尖篇)(人教版)(原卷版)_第1页
专题24.14 圆章末十大题型总结(拔尖篇)(人教版)(原卷版)_第2页
专题24.14 圆章末十大题型总结(拔尖篇)(人教版)(原卷版)_第3页
专题24.14 圆章末十大题型总结(拔尖篇)(人教版)(原卷版)_第4页
专题24.14 圆章末十大题型总结(拔尖篇)(人教版)(原卷版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题24.14圆章末十大题型总结(拔尖篇)【人教版】TOC\o"1-3"\h\u【题型1切线的判定与性质进行计算与证明】 1【题型2圆周角定理有关的计算与证明】 3【题型3垂径定理的实际应用】 4【题型4由点与圆的位置关系求求最值】 6【题型5由圆的对称性求最短路线问题】 7【题型6三角形的内切圆与内心】 9【题型7正多边形与圆】 10【题型8圆锥侧面积的相关计算】 11【题型9动点的运动轨迹长度计算】 12【题型10动态图形的扫过的面积的计算】 14【题型1切线的判定与性质进行计算与证明】【方法点拨】切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。切线的性质定理:圆的切线垂直于过切点的半径。经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。【例1】(2023秋·辽宁抚顺·九年级统考期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=12∠BDC.

(1)求证:AF是⊙O的切线;(2)若BC=6,AB=10,求⊙O的半径长.【变式1-1】(2023秋·广东珠海·九年级统考期末)如图,AB为圆O的直径,C为圆O上一点,D为弦BC的中点,过点C的切线与OD的延长线相交于点E,连接BE.(1)求证:BE是圆O的切线;(2)当AB=10,AC=8时,求线段BE的长.【变式1-2】(2023秋·湖北·九年级期末)AB为⊙O的直径,PA为⊙O的切线,BC∥OP交⊙O于C,PO交⊙O于D,(1)求证:PC为⊙O的切线;(2)过点D作DE⊥AB于E,交AC于F,PO交AC于H,BD交AC于G,DF=FG,DF=5,CG=6,求⊙O的半径.【变式1-3】(2023秋·浙江·九年级期末)如图1,在⊙O中,点H是直径AB上的一点,过H点作弦CD⊥AB,点E是BAD的中点,过点E作BD的平行线交DC延长线于点F,连接BE,交CD于点G.(1)求证:EF是⊙O的切线;(2)求证:BD+EF=DF;(3)如图2,连接DE,若BDBG=k,则当k为何值时,线段【题型2圆周角定理有关的计算与证明】【方法点拨】圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等。推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。【例2】(2023秋·北京西城·九年级北京八中校考期中)如图,已知:过⊙O上一点A作两条弦AB、AC,且∠BAC=45°,(AB,AC都不经过O)过A作AC的垂线AF交⊙O于D,直线BD,AC交于点E,直线BC,DA交于点F.

(1)证明:BE=BF;(2)探索线段AB、AE、AF的数量关系,并证明你的结论.【变式2-1】(2023秋·湖北·九年级期末)已知△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,连接DB,DC.(1)如图①,当∠BAC=120°时,请直接写出线段AB,AC,AD之间满足的等量关系式:;(2)如图②,当∠BAC=90°时,试探究线段AB,AC,AD之间满足的等量关系,并证明你的结论.【变式2-2】(2023秋·山西朔州·九年级校考期中)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8.

(1)求∠ADB的度数;(2)求AC的长度;(3)判定四边形AFBC的形状,并证明你的结论.【变式2-3】(2023秋·江苏盐城·九年级统考期中)如图,在⊙O的内接四边形ABCD中,DB=DC,∠DAE是四边形ABCD的一个外角.(1)若∠DAE=75°,则∠DAC=°;(2)过点D作DE⊥AB于E,判断AB、(3)若AB=6、AE=2,求【题型3垂径定理的实际应用】【方法点拨】垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线过圆心,且平分弦对的两条弧.【例3】(2023秋·河北石家庄·九年级校联考期末)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为5厘米,AB=8厘米.若从日前太阳所处位置到太阳完全跳出海平面的时间为8分钟,则①现在“图上”太阳与海平线的位置关系是;②“图上”太阳升起的平均速度为厘米/分.【变式3-1】(2023秋·浙江台州·九年级校考期中)我市在创建全国文明城市检查中,发现一些破旧的公交车候车亭有碍观瞻,现已更换新的公交候车亭(图1),图2所示的是侧面示意图,FG为水平线段,PQ⊥FG,点H为垂足,FG=4m,FH=2.4m,点P在弧FG上,且弧FG所在的圆的圆心O到FG,PQ的距离之比为5:2,则PH的长约为多少米?

【变式3-2】(2023春·浙江台州·九年级台州市书生中学校考期中)如图这是我市某跨海大桥正侧面的照片,大桥的主桥拱为圆弧型,桥面AB长为800米,且与水面平行,小王用计算机根据照片对大桥进行了模拟分析,在桥正下方的水面上取一点P,在桥面AB上取点C,作射线PC交弧(主桥拱)于点D,右边画出了PC与PD关于AC长的函数图象,下列对此桥的判断不合理的是()A.桥拱的最高点与桥面AB的实际距离约为210米B.桥拱正下方的桥面EF的实际长度约为500米C.拍摄照片时,桥面离水面的实际高度约为110米D.桥面上BF段的实际长度约200米【变式3-3】(2023秋·河北邢台·九年级校联考期末)“筒车”是一种以水流作动力,取水灌田的工具.如图,“筒车”盛水筒的运行轨迹是以轴心O为圆心的圆,已知圆心O始终在水面上方.且当圆被水面截得的弦AB为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).

(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦AB从原来的6米变为8米时,则水面下盛水筒的最大深度为多少米?【题型4由点与圆的位置关系求求最值】【方法点拨】解决此类问题关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【例4】(2023秋·江苏苏州·九年级苏州市振华中学校校考期中)如图,在平面直角坐标系中,已知点A0,2,点B0,2+t,C0,2-t(t>0),点P在以D6,6为圆心,2为半径的圆上运动,且始终满足∠BPC=90°【变式4-1】(2023秋·山东德州·九年级统考期中)如图,点A、B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最小值为.【变式4-2】(2023秋·山东泰安·九年级校联考期末)如图,点P(3,4),⊙P半径为2,A(2.5,0),B(5,0),点A.32 B.52 C.72【变式4-3】(2023秋·河南驻马店·九年级平舆县第二初级中学校考期末)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP的最小值为.【题型5由圆的对称性求最短路线问题】【例5】(2023秋·浙江杭州·九年级校考期中)如图,在⊙O中,AB是⊙O的直径,AB=10,AC=CD=DB,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=12∠AOD;③DM⊥CE;④【变式5-1】(2023秋·安徽淮北·九年级校考期末)如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为弧BC的中点,P是直径AB上一动点,则PC+PD的最小值为(

)A.22 B.2 C.1 D.【变式5-2】(2023秋·陕西渭南·九年级统考期末)如图,A、B是半圆O上的两点,MN是直径,OB⊥MN.若AB=4,OB=5,P是MN上的一动点,则PA+PB的最小值为.【变式5-3】(2023秋·广东广州·九年级校考期末)(1)如图①,在△ABC中,∠A=120∘,AB=AC=5.尺规作图:作△ABC的外接圆⊙O,并直接写出△ABC的外接圆半径(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.(3)如图③所示,AB,AC、BC是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60∘,BC所对的圆心角为60∘,新区管委会想在BC路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在BC、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF【题型6三角形的内切圆与内心】【方法点拨】三角形的内切圆及有关概念:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心是三角形各内角平分线的交点,这点到三角形的各边的距离都相等.【例6】(2023秋·江苏无锡·九年级统考期末)如图,△ABC的内切圆⊙O与AB,BC,AC相切于点D,E,F,已知AB=6,AC=5,BC=7,则DE的长是(

)A.1277 B.1077 C.【变式6-1】(2023秋·江苏南京·九年级统考期末)以下列三边长度作出的三角形中,其内切圆半径最小的是(

)A.8,8,8 B.4,10,10 C.5,9,10 D.6,8,10【变式6-2】(2023秋·河南漯河·九年级统考期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,且∠A=90°,BC=5,CA=4,则⊙O的半径是.

【变式6-3】(2023秋·江苏镇江·九年级统考期中)如图,四边形ABCD是矩形,点P是△ABD的内切圆的圆心,过P作PE⊥BC,PF⊥CD,垂足分别为点E、F,则四边形PECF和矩形ABCD的面积之比等于()A.1:2 B.2:3 C.3:4 D.无法确定【题型7正多边形与圆】【方法点拨】定义:正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心正多边形的一边的距离叫做正多边形的边心距。【例7】(2023秋·山东淄博·九年级统考期末)已知四个正六边形如图摆放在图中,顶点A,B,C,D,E,F在圆上.若两个大正六边形的边长均为2,则小正六边形的边长是(

)A.3-3 B.23-12 C.【变式7-1】(2023秋·河南驻马店·九年级统考期末)如图,已知⊙O的半径为4,则该圆内接正六边形ABCDEF的边心距OG(

A.32 B.32 C.23【变式7-2】(2023秋·浙江杭州·九年级校考期中)如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则EFGH的值是(A.62 B.2 C.3 D.【变式7-3】(2023秋·北京海淀·九年级期末)如图,⊙O是正八边形ABCDEFGH的外接圆,⊙O的半径是1,则下列四个结论中正确的是.①DF的长为π2;②DF=2OF;③ΔODE【题型8圆锥侧面积的相关计算】【方法点拨】解决此类问题掌握圆锥侧面积的计算公式是关键,并且能够灵活运用.【例8】(2023秋·全国·九年级专题练习)小华的爸爸要用一块矩形铁皮加工出一个底面半径为20cm,高为402(1)你能求出这个锥形漏斗的侧面展开图的圆心角吗?(2)如图,有两种设计方案,请你计算一下,哪种方案所用的矩形铁皮面积较少?【变式8-1】(2012春·湖南永州·九年级阶段练习)如图,在等腰梯形ABCD中,AD∥BC,AD=2,BC=6,以A为圆心,AD为半径的圆与BC边相切于点M,于AB交于点E,将扇形A-DME剪下围成一个圆锥,则圆锥的高为.【变式8-2】(2023秋·江苏·九年级专题练习)如图是一张直角三角形卡片,∠ACB=90°,AC=BC,点D、E分别在边AB、AC上,AD=2cm,DB=4cm,DE⊥AB.若将该卡片绕直线DE旋转一周,则形成的几何体的表面积为cm2.

【变式8-3】(2023秋·全国·九年级专题练习)如图,在一张四边形ABCD的纸片中,AB∥DC,AD=AB=BC=22,∠D=45°,以点A为圆心,2(1)求证:DC与⊙A相切;(2)过点B作⊙A的切线;(要求:尺规作图,不写作法,保留作图痕迹)(3)若用剪下的扇形AEF围成一个圆锥的侧面,能否从剪下的两块余料中选取一块,剪出一个圆作为这个圆锥的底面?【题型9动点的运动轨迹长度计算】【例9】(2023春·黑龙江大庆·九年级校考阶段练习)四边形ABCD中,∠B=∠D=90°,∠DAB=135°,且AB=2,AD=42.以B为圆心,BC为半径作弧,交BA的延长线于点E,若点Q为弧EC上的动点,过点Q作QH⊥BC于点H,设点I为△BQH的内心,连接BI,QI,当点Q从点C运动到点E时,则内心I【变式9-1】(2023秋·江苏连云港·九年级校考阶段练习)如图,已知∠ABC=90°,AB=10,BC=5,半径为2的⊙O从点A出发,沿A→B→C方向滚动到点C时停止,圆心O运动的路程是.

【变式9-2】(2023秋·江苏徐州·九年级校考阶段练习)如图,有一块长为4cm、宽为3cm的矩形木板在桌面上按顺时针方向无滑动地翻滚,木板上顶点A的位置变化为A→A1→A2,其中,第二次翻滚时被桌面上一个小木块挡住,使木板边沿A2C

A.10cm B.3.5πcm C.4.5πcm【变式9-3】(2023·浙江温州·校考三模)图1是挂桶式垃圾车的联动装置,通过钢轴先后作两次旋转移动垃圾桶,实现对垃圾桶提升和翻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论