版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年内蒙古通辽市奈曼旗八年级数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6) B.(﹣4,6) C.(﹣6,4) D.(﹣6,﹣4)2.等腰三角形的一个外角是100°,则它的顶角的度数为()A.80° B.80°或50° C.20° D.80°或20°3.如果代数式的值为3,那么代数式的值等于()A.11 B.9 C.13 D.74.在平面直角坐标系中,若将点的横坐标乘以,纵坐标不变,可得到点,则点和点的关系是()A.关于轴对称B.关于轴对称C.将点向轴负方向平移一个单位得到点D.将点向轴负方向平移一个单位得到点5.若点和点关于轴对称,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm7.在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1)8.下列运算正确的是()A.(8x3-4x2)÷4x=2x2-x B.x5x2=x10C.x2y3÷(xy3)=xy D.(x2y3)2=x4y59.在平面直角坐标系中,点关于轴对称的点的坐标为()A. B. C. D.10.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥c; B.锐角三角形中最大的角一定大于或等于60°;C.两条直线被第三条直线所截,内错角相等; D.三角形三个内角和等于180°.11.一个等腰三角形的两边长分别为3、7,则它的周长为()A.17 B.13或17 C.13 D.1012.已知△ABC的三边为a,b,c,下列条件能判定△ABC为直角三角形的是()A. B.C. D.二、填空题(每题4分,共24分)13.三个全等三角形按如图的形式摆放,则_______________度.14.不等式组的解是____________15.将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.16.已知一直角三角形的木板,三边的平方和为1800,则斜边长为.17.如图,已知平分,且,若,则的度数是__________.18.化简:=_____________.三、解答题(共78分)19.(8分)如图,铁路上A,B两站(视为直线上两点)相距14km,C,D为两村(可视为两个点),DA⊥AB于A,CB⊥AB于B,已知DA=8km,CB=6km,现在要在铁路上建一个土特产品收购站E,使C,D两村到E站的距离相等,则E站应建在距A站多少千米处.20.(8分)如图,为等边三角形,,、相交于点,于点,,.(1)求证:;(2)求的长.21.(8分)如图在平面直角坐标系中,的顶点坐标分别为,,(1)请在图中画出关于轴的对称图形,点、、的对称点分别为、、,其中的坐标为;的坐标为;的坐标为.(2)请求出的面积.22.(10分)如图,ABC中,AB=AC,AD⊥BC于点D,延长AB至点E,使∠AEC=∠DAB.判断CE与AD的数量关系,并证明你的结论.23.(10分)如图,在△ABC中,∠ACB=90°,点E,F在边AB上,将边AC沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD的延长线上的点B'处.(1)求∠ECF的度数;(2)若CE=4,B'F=1,求线段BC的长和△ABC的面积.24.(10分)如图,在中,点M为BC边上的中点,连结AM,D是线段AM上一点(不与点A重合).过点D作,过点C作,连结AE.(1)如图1,当点D与M重合时,求证:①;②四边形ABDE是平行四边形.(2)如图2,延长BD交AC于点H,若,且,求的度数.25.(12分)如图,过点的两条直线,分别交轴于点,,其中点在原点上方,点在原点下方,已知.(1)求点的坐标;(2)若的面积为9,求直线的解析式.26.某学校开展美丽校园建设,计划购进A,B两种树苗共21棵,已知A种树苗每棵80元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.
参考答案一、选择题(每题4分,共48分)1、A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.2、D【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.3、B【分析】先由已知可得2x-y=2,然后将写成2(2x-y)+5,最后将2x-y=2代入计算即可.【详解】解:∵代数式2x-y+1的值为3∴2x-y=2∴=2(2x-y)+5=2×2+5=1.故答案为B.【点睛】本题主要考查了代数式求值,根据已知求出2x-y的值是解答本题的关键.4、B【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点是(-x,y),据此解答本题即可.【详解】解:∵在直角坐标系中的横坐标乘以,纵坐标不变,∴的坐标是(-1,2),∴和点关于y轴对称;故选:B.【点睛】本题考查的是平面直角坐标系中关于坐标轴对称的两点坐标之间的关系:关于纵坐标对称,则纵坐标不变,横坐标互为相反数.5、D【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,1)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-1.解得a=1,b=−2.则点C(a,b)在第四象限,故选:D.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-1是解题关键.6、B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,
∴EC=DE,
∴AE+DE=AE+EC=3cm.
故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.7、A【解析】点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.8、A【分析】根据整式的除法法则、同底数幂相乘的法则、积的乘方和幂的乘方法则对各选项进行分析即可求解.【详解】(8x3﹣4x2)÷4x=2x2﹣x,故选项A正确;x1x2=x7≠x10,故选项B错误;x2y3÷(xy3)=x≠xy,故选项C错误;(x2y3)2=x4y6≠x4y1.故选项D错误.故选:A.【点睛】本题考查了同底数幂的乘法、多项式除以单项式、单项式除以单项式及积的乘方,题目比较简单,掌握整式的运算法则是解决本题的关键.9、B【解析】根据关于y轴对称的点横坐标互为相反数,纵坐标相等进行解答即可.【详解】∵(m、n)关于y轴对称的点的坐标是(-m、n),∴点M(-3,-6)关于y轴对称的点的坐标为(3,-6),故选B.【点睛】本题考查了关于y轴对称的点的坐标特征,熟练掌握关于y轴对称的点的坐标特征是解题的关键.10、C【分析】根据平行线的性质和判定和三角形的内角对每一个选项进行判断即可.【详解】解:A、如果a∥b,b∥c,那么a∥c,是真命题,不符合题意,本选项错误;B、锐角三角形中最大的角一定大于或等于60°,是真命题,不符合题意,本选项错误;C、两条直线被第三条直线所截,若这两条直线平行,则内错角相等,故是假命题,符合题意,本选项正确;D、三角形三个内角和等于180°,真命题,不符合题意,本选项错误;故选:C.【点睛】本题考查了真假命题的判断,掌握平行线的性质和判定和三角形内角问题是解题关键.11、A【分析】题目中没有明确底和腰,故要先进行分类讨论,再结合三角形三边关系定理分析即可解答.【详解】∵①当3为腰、7为底时,三角形的三边分别为3、3、7,此时不满足三角形三边关系定理舍去;②当3为底、7为腰时,三角形的三边分别为3、7、7,此时满足三角形三边关系定理.∴等腰三角形的周长是:故选:A【点睛】本题考查了等腰三角形的性质以及三角形三边关系定理.解题的关键是熟练掌握三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.12、B【分析】利用勾股定理的逆定理逐项判断即可.【详解】解:A、设a=x,则b=x,c=x,∵(x)2+(x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;B、设a=x,则b=x,c=x,∵(x)2+(x)2=(x)2,∴此三角形是直角三角形,故本选项符合题意;C、设a=2x,则b=2x,c=3x,∵(2x)2+(2x)2≠(3x)2,∴此三角形不是直角三角形,故本选项不符合题意;D、设a=x,则b=2x,c=x,∵(x)2+(2x)2≠(x)2,∴此三角形不是直角三角形,故本选项不符合题意;故选B.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.二、填空题(每题4分,共24分)13、180°【分析】如图所示,利用平角的定义结合三角形内角和性质以及全等三角形性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,然后进一步求解即可.【详解】如图所示,由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7==540°,∵三个三角形全等,∴∠4+∠9+∠6=180°,∵∠5+∠7+∠8=180°,∴540°−180°−180°=180°,故答案为:180°.【点睛】本题主要考查了全等三角形性质以及三角形内角和性质,熟练掌握相关概念是解题关键.14、【分析】根据一元一次不等式组解集的确定方法,即可求解.【详解】由,可得:;故答案是:.【点睛】本题主要考查确定一元一次不等式组的解集,掌握确定一元一次不等式组解集的口诀:“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.15、25°【解析】试题分析:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°.∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°.∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.16、1.【详解】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为1800,则斜边的平方为三边平方和的一半,即斜边的平方为=900,∴斜边长==1.故答案是:1.17、25°【分析】根据角平分线的定义得出∠CBE=25°,再根据平行线的性质可得∠C的度数.【详解】∵平分,且,∴∠CBE=∠ABC=25°,∵∴∠CBE=∠BCD∴∠C=25°.故答案为:25°.【点睛】此题主要考查了解平分线的定义以及平行线的性质,求出∠CBE=25°是解题关键.18、【解析】原式==三、解答题(共78分)19、E站应建立在距A站6km处.理由详见解析【解析】当AE=BC=6km时,AD=BE,可判定△ADE≌△BEC,即DE=EC,问题得解.【详解】E站应建立在距A站6km处.理由:因为BE=AB-AE=14-6=8(km),所以AD=BE,AE=BC.在△ADE和△BEC中,,所以△ADE≌△BEC(SAS).所以DE=EC.所以E站应建立在距A站6km处.【点睛】此题主要考查了全等三角形的判定和性质,熟练掌握“一线三等角模型”及三角形全等的判定定理是解题关键.20、(1)见解析;(2)7.【分析】(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.【详解】(1)证明:为等边三角形,,;在和中,,,;(2),,;,,,,在中,,又,.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ是解题的关键.21、(1)详见解析,(3,4);(4,1);(1,1);(2)4.1.【分析】(1)根据轴对称的定义画出图形,再写出坐标;(2)根据三角形的面积公式求解即可.【详解】(1)如图,为所求;的坐标为(3,4);的坐标为(4,1);的坐标为(1,1).(2)的面积=.【点睛】考核知识点:轴对称和点的坐标;画出图形是关键.22、CE=2AD,证明详见解析【分析】延长AD至点N使DN=AD,AN交CE于点M,连接CN,根据等腰三角形的性质得到MA=ME,根据全等三角形的性质得到∠N=∠DAB.根据平行线的性质得到∠3=∠AEC.求得MC=MN,于是得到结论.【详解】解:CE=2AD;理由:延长AD至点N使DN=AD,AN交CE于点M,连接CN,∵∠DAB=∠AEC,∴MA=ME,∵AB=AC,AD⊥BC,∴∠CAD=∠DAB,BD=CD,∠1=∠2=90°.∴ABD≌NCD(AAS),∴∠N=∠DAB.∴CN∥AE.∴∠3=∠AEC.∴∠3=∠N.∴MC=MN,∴CE=MC+ME=MN+MA=AN=2AD.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.23、(1)∠ECF=45°;(2)BC=,和△ABC的面积为.【分析】(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',再根据∠ACB=90°,即可得出∠ECF=45°;(2)在Rt△BCE中,根据勾股定理可得BC=,设AE=x,则AB=x+5,根据勾股定理可得AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,求得x=,即可得出S△ABC=AB×CE=.【详解】解:(1)由折叠可得,∠ACE=∠DCE=∠ACD,∠BCF=∠B'CF=∠BCB',又∵∠ACB=90°,∴∠ACD+∠BCB'=90°,∴∠ECD+∠FCD=×90°=45°,即∠ECF=45°;(2)由折叠可得,∠DEC=∠AEC=90°,BF=B'F=1,∴∠EFC=45°=∠ECF,∴CE=EF=4,∴BE=4+1=5,∴再Rt△BCE中,BC=设AE=x,则AB=x+5,∵在Rt△ACE中,AC2=AE2+CE2,在Rt△ABC中,AC2=AB2﹣BC2,∴AE2+CE2=AB2﹣BC2,即x2+42=(x+5)2﹣41,解得x=∴S△ABC=AB×CE=(+5)×4=.【点睛】本题主要考查折叠的性质及勾股定理的应用,掌握折叠的性质及勾股定理是解题的关键.24、(1)①见解析;②见解析;(2).【分析】(1)①根据平行线的性质和中点性质即可得到ASA证明;②根据一组对边平行且相等即可证明四边形ABDE是平行四边形;(2)取线段HC的中点I,连接MI,根据中位线的判断与性质,可得,,即可求解.【详解】(1)①如图1中,∵,∴,∵,∴,∵AM是的中线,且D与M重合,∴,∴.②由①得,∴,∵,∴四边形ABDE是平行四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司长期供货合同完整版模板
- 茶叶买卖服务协议
- 工程质量考核细则
- 工程造价大学生毕业实习报告范文文档
- 工程造价个人工作总结
- 工程造价-;只要你学习-从事建筑-不管是什么专业绝对能用到
- 辅导班合作协议范本新
- 湖北省黄石市阳新县2024年七年级上学期期中数学试题【附答案】
- 中考物理复习专项类型2跨学科实践题组课件
- 5.2土壤-解密土壤教学课件人教版(2019)高中地理必修一
- 四年级上册语文生字表(带拼音、部首、笔画、组词)
- 工程项目管理-英文课件-RiskManagement.ppt
- 手绘POP海报设计ppt课件
- 同花顺公式函数手册
- (完整版)采暖通风与空气调节设计规范
- 中历史课堂教学的不同课型的基本方法和要求
- 中央空调管网改造工程施工组织设计
- 单位公务用车加油登记表格模板正式版
- linux说课教学内容
- 校服发布主持稿(202103)
- 马尔可夫过程
评论
0/150
提交评论