2023-2024学年江苏省南通市北城中学八年级数学第一学期期末联考试题含解析_第1页
2023-2024学年江苏省南通市北城中学八年级数学第一学期期末联考试题含解析_第2页
2023-2024学年江苏省南通市北城中学八年级数学第一学期期末联考试题含解析_第3页
2023-2024学年江苏省南通市北城中学八年级数学第一学期期末联考试题含解析_第4页
2023-2024学年江苏省南通市北城中学八年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省南通市北城中学八年级数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{,}=-1的解为()A.1 B.2 C.1或2 D.1或-22.若,则的值是()A. B. C.3 D.63.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.每个网格中均有两个图形,其中一个图形关于另一个图形轴对称的是()A. B. C. D.5.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC④BA+BC=2BF其中正确的是()A.①②③ B.①③④ C.①②④ D.①②③④6.4的算术平方根是()A.-2 B.2 C. D.7.已知多边形的每个内角都是108°,则这个多边形是()A.五边形 B.七边形 C.九边形 D.不能确定8.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.59.如图,牧童在A处放牛,其家在B处,A,B到海岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750 米 B.1500米 C.500 米 D.1000米10.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B二、填空题(每小题3分,共24分)11.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大11cm,O到AB的距离为4cm,△OBC的面积_____cm1.12.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.13.命题“全等三角形的面积相等”的逆命题是_____命题.(填入“真”或“假”)14.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为__________.15.已知一个三角形的两边长分别为2和5,第三边的取值范围为______.16.如图,在中,,,以原点为圆心,为半径画弧,交数轴于点,则点表示的实数是_____.17.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.18.如图,中,,,、分别是、上两点,连接并延长,交的延长线于点,此时,,则的度数为______.三、解答题(共66分)19.(10分)如图,点,分别在的边上,,,.求证:20.(6分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若,点在、内部,,,求的度数.(2)如图2,在AB∥CD的前提下,将点移到、外部,则、、之间有何数量关系?请证明你的结论.(3)如图3,写出、、、之间的数量关系?(不需证明)(4)如图4,求出的度数.21.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.22.(8分)某商场计划购进A、B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:类型价格进价/(元/盏)售价/(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯进货数量的4倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?23.(8分)某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?24.(8分)如图,点A、C、D、B在同一条直线上,且(1)求证:(2)若,求的度数.25.(10分)先观察下列等式,再回答问题:①;②;③;(1)根据上面三个等式,请猜想的结果(直接写出结果)(2)根据上述规律,解答问题:设,求不超过的最大整数是多少?26.(10分)如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;(2)若△ABC的面积为40,BD=5,求AF的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】分类讨论与的大小,列出分式方程,解方程即可.【详解】解:当时,x<0,方程变形为,去分母得:2=3-x,

解得:x=1(不符合题意,舍去);

当,,x>0,方程变形得:,去分母得:1=3-x,

解得:x=2,

经检验x=2是分式方程的解,

故选:B.【点睛】此题考查了解分式方程,分类讨论是解本题的关键.2、A【分析】将分式的分子和分母同时除以x,然后利用整体代入法代入求值即可.【详解】解:===将代入,得原式=故选A.【点睛】此题考查的是分式的化简求值题,掌握分式的基本性质是解决此题的关键.3、B【分析】利用反例判断命题为假命题的方法对各选项进行判断.【详解】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.【点睛】此题主要考查命题真假的判断,解题的关键是熟知举反例的方法.4、B【分析】根据轴对称定义:如果一个图形沿某条直线对折能与另一个图形重合,那么这两个图形关于这条直线成轴对称进行分析即可.【详解】A、其中一个图形不与另一个图形成轴对称,故此选项错误;

B、其中一个图形与另一个图形成轴对称,故此选项正确;

C、其中一个图形不与另一个图形成轴对称,故此选项错误;

D、其中一个图形不与另一个图形成轴对称,故此选项错误;

故选:B.【点睛】本题主要考查了轴对称,关键是掌握轴对称定义.5、D【分析】易证,可得,AD=EC可得①②正确;再根据角平分线的性质可求得,即③正确,根据③可判断④正确;【详解】∵BD为∠ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBD中,BD=BC,∠ABD=∠CDB,BE=BA,∴△(SAS),故①正确;∵BD平分∠ABC,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,故②正确;∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE是等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,故③正确;作EG⊥BC,垂足为G,如图所示:∵E是BD上的点,∴EF=EG,在△BEG和△BEF中∴△BEG≌△BEF,∴BG=BF,在△CEG和△AFE中∴△CEG≌△AFE,∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,故④正确;故选:D.【点睛】本题考查了全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应边、对应角相等的性质是解题的关键;6、B【解析】试题分析:因,根据算术平方根的定义即可得4的算术平方根是1.故答案选B.考点:算术平方根的定义.7、A【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】∵多边形的每个内角都是108°,

∴每个外角是180°-108°=72°,

∴这个多边形的边数是360°÷72°=5,

∴这个多边形是五边形,

故选A.【点睛】此题考查多边形的外角与内角,解题关键是掌握多边形的外角与它相邻的内角互补.8、C【解析】试题解析:根据题意得:360°÷60°=6,所以,该多边形为六边形.故选C.考点:多边形的内角与外角.9、D【分析】根据轴对称的性质和“两点之间线段最短”,连接A′B,得到最短距离为A′B,再根据全等三角形的性质和A到河岸CD的中点的距离为500米,即可求出A'B的值.【详解】解:作出A的对称点A′,连接A′B与CD相交于M,则牧童从A处把牛牵到河边饮水再回家,最短距离是A′B的长.

由题意:AC=BD,所以A′C=BD,

所以CM=DM,M为CD的中点,

易得△A′CM≌△BDM,

∴A′M=BM

由于A到河岸CD的中点的距离为500米,

所以A′到M的距离为500米,

A′B=2A′M=1000米.

故最短距离是1000米.故选:D.【点睛】此题考查了轴对称的性质和“两点之间线段最短”,解答时要注意应用相似三角形的性质.10、A【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【详解】∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.二、填空题(每小题3分,共24分)11、24.【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大22cm,∴可得BC=22cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=×22×4=24cm2.考点:2.三角形的面积;2.三角形三边关系.12、8【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.13、假【解析】试题分析:原命题的逆命题为:面积相等的两个三角形为全等三角形,则这个命题为假命题.考点:逆命题14、20°【分析】根据可得出,再利用三角形外角的性质得出,然后利用得出,最后利用三角形内角和即可求出答案.【详解】故答案为:20°.【点睛】本题主要考查等腰三角形的性质及三角形外角的性质,内角和定理,掌握等腰三角形的性质是解题的关键.15、.【分析】根据三角形三边关系两边之和大于第三边,两边之差小于第三边求解即可.【详解】∵一个三角形的两边长分别为2和5,∴第三边x的范围为:,即:.所以答案为.【点睛】本题主要考查了三角形三边关系,熟练掌握相关概念是解题关键.16、-【分析】根据勾股定理,可得OA的长,根据半径相等,可得答案.【详解】由勾股定理,得OA==,由半径相等,得OP=OA=,∴点表示的实数是-故答案为:-.【点睛】本题考查了数轴,利用了实数与数轴的一一对应关系.17、六【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.18、145°【分析】根据三角形外角性质求出,,代入求出即可.【详解】解:,,,,,故答案为:.【点睛】本题考查了三角形的外角性质,能熟记三角形外角性质的内容是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.三、解答题(共66分)19、见解析【分析】首先判定△ADE是等边三角形,从而得到∠ADE=∠AED=60°.接着根据平行线的性质得到∠B=∠C=60°,所以△ABC是等边三角形,所以AB=BC=AC.【详解】证明:∵,∴是等边三角形∴∵∴,∴∴【点睛】本题考查到了等边三角形的性质与判定和平行线的性质,难度不大.20、(1)80°;(2)∠B=∠D+∠BPD,证明见解析;(3)∠BPD=∠B+∠D+BQD;;(4)360°.【分析】(1)过P作平行于AB的直线,根据内错角相等可得出三个角的关系,然后将∠B=50°,∠D=30°代入,即可求∠BPD的度数;(2)先由平行线的性质得到∠B=∠BOD,然后根据∠BOD是三角形OPD的一个外角,由此可得出三个角的关系;(3)延长BP交QD于M,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;(4)根据三角形外角性质得出∠CMN=∠A+∠E,∠DNB=∠B+∠F,代入∠C+∠D+CMN+∠DNM=360°即可求出答案.【详解】(1)如图1,过P点作PO∥AB,∵AB∥CD,∴CD∥PO∥AB,∴∠BPO=∠B,∠OPD=∠D,∵∠BPD=∠BPO+∠OPD,∴∠BPD=∠B+∠D.∵∠B=50°,∠D=30°,∴∠BPD=∠B+∠D=50°+30°=80°;(2)∠B=∠D+∠BPD,∵AB∥CD,∴∠B=∠BOD,∵∠BOD=∠D+∠BPD,∴∠B=∠D+∠BPD;(3)如图:延长BP交QD于M在△QBM中:∠BMD=∠BQD+∠QBM在△PMD中:∠BPD=∠BMD+∠D=∠BQD+∠QBM+∠D故答案为:∠BPD=∠B+∠D+BQD∴、、、之间的数量关系为:∠BPD=∠B+∠D+BQD(4)如图∵∠CMN=∠A+∠E,∠DNB=∠B+∠F,又∵∠C+∠D+∠CMN+∠DNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.21、答案见解析【分析】由BE=CF可得BF=CE,再结合AB=DC,∠B=∠C可证得△ABF≌△DCE,问题得证.【详解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.22、(1)75盏;25盏(2)购进A型台灯20盏,B型台灯80盏;1元【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100﹣x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设购进A型台灯x盏,则购进B型台灯(100﹣x)盏,由题意可得:30x+50(100﹣x)=3500∴x=75∴100﹣x=25答:购进A型台灯75盏,购进B型台灯25盏;(2)设商场销售完这批台灯可获利y元,y=15x+20(100﹣x)=﹣5x+2000又∵100﹣x≤4x,∴x≥20∵k=﹣5<0,∴y随x的增大而减小∴当x=20时,y取得最大值,最大值是1.答:购进A型台灯20盏,购进B型台灯80盏时获利最多,此时利润为1元.【点睛】本题考查了一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.23、(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论