2023-2024学年广西壮族自治区玉林市陆川县八年级数学第一学期期末监测试题含解析_第1页
2023-2024学年广西壮族自治区玉林市陆川县八年级数学第一学期期末监测试题含解析_第2页
2023-2024学年广西壮族自治区玉林市陆川县八年级数学第一学期期末监测试题含解析_第3页
2023-2024学年广西壮族自治区玉林市陆川县八年级数学第一学期期末监测试题含解析_第4页
2023-2024学年广西壮族自治区玉林市陆川县八年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广西壮族自治区玉林市陆川县八年级数学第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.2.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()​A.1个 B.2个 C.3个 D.4个3.在平面直角坐标系中,已知点A(﹣4,3)与点B关于原点对称,则点B的坐标为()A.(﹣4,﹣3) B.(4,3) C.(4,﹣3) D.(﹣4,3)4.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B. C.2.4 D.3.55.如图,小明从地出发,沿直线前进15米后向左转18°,再沿直线前进15米,又向左转18°⋯⋯,照这样走下去,他第一次回到出发地地时,一共走的路程是()A.200米 B.250米 C.300米 D.350米6.正比例函数y=2kx的图像如图所示,则关于函数y=(k-2)x+1-k的说法:①y随x的增大而增大;②图像与y轴的交点在x轴上方;③图像不经过第三象限;④要使方程组有解,则k≠-2;正确的是()A.①② B.①②③ C.②③ D.②③④7.下列说法中正确的个数是()①当a=﹣3时,分式的值是0②若x2﹣2kx+9是完全平方式,则k=3③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质④在三角形内部到三边距离相等的点是三个内角平分线的交点⑤当x≠2时(x﹣2)0=1⑥点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)A.1个 B.2个 C.3个 D.4个8.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)9.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,补充下列条件不能证明△ABC≌△DEF的是()A.AD=CF B.BC∥EF C.∠B=∠E D.BC=EF10.在平面直角坐标系中,点与点关于轴对称,则点的坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.对于实数a,b,定义运算“※”:a※b=,例如3※1,因为3<1.所以3※1=3×1=2.若x,y满足方程组,则x※y=_____.12.如图,在平面直角坐标系中,点A的坐标为(0,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′间的距离为_____.13.如图,若和的面积分别为、,则_____(用“>”、“=”或“<”来连接).14.观察下列图形的排列规律(其中△,○,☆,□分别表示三角形,圆,五角星,正方形):□○△☆□○△☆□○……,则第2019个图形是________.(填图形名称)15.某体育馆的入场票上标有几区几排几号,将1排2区3号记作(1、2、3),那么(3、2、6)表示的位置是______.16.如图,,于,于,且,则________.17.生物学家发现一种病毒,其长度约为0.00000032米,数据0.00000032用科学记数法表示为________.18.已知等腰三角形的底角为15°,腰长为30cm,则此等腰三角形的面积为_____.三、解答题(共66分)19.(10分)已知不等式组(1)解这个不等式组,并将它的解集在数轴上表示出来.(2)写出它的所有整数解20.(6分)已知中,,,过顶点作射线.(1)当射线在外部时,如图①,点在射线上,连结、,已知,,().①试证明是直角三角形;②求线段的长.(用含的代数式表示)(2)当射线在内部时,如图②,过点作于点,连结,请写出线段、、的数量关系,并说明理由.21.(6分)如图是由36个边长为1的小正方形拼成的网格图,请按照要求画图:(1)在图①中画出2个以AB为腰且底边不等的等腰△ABC,要求顶点C是格点;(2)在图②中画出1个以AB为底边的等腰△ABC,要求顶点C是格点.22.(8分)在中,,,是的角平分线.(1)如图1,求证:;(2)如图2,作的角平分线交线段于点,若,求的面积;(3)如图3,过点作于点,点是线段上一点(不与重合),以为一边,在的下方作,交延长线于点,试探究线段,与之间的数量关系,并说明理由.23.(8分)如图,平面直角坐标系中,A,B,以B点为直角顶点在第二象限内作等腰Rt△ABC.(1)求点C的坐标;(2)求△ABC的面积;(3)在y轴右侧是否存在点P,使△PAB与△ABC全等?若存在,直接写出点P的坐标,若不存在,请说明理由.24.(8分)如图,在中,厘米,厘米,点为的中点,点在线段上以2厘米/秒的速度由点向点运动,同时点在线段上由点向点运动.(1)若点的运动速度与点相同,经过1秒后,与是否全等,请说明理由.(2)若点的运动速度与点不同,当点的运动速度为多少时,能够使与全等?25.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.26.(10分)如图,已知AB=AC,点D、E在BC上,且∠ADE=∠AED,求证:BD=CE.

参考答案一、选择题(每小题3分,共30分)1、C【分析】让点A的横坐标减2,纵坐标不变,可得A′的坐标.【详解】解:将点A(4,2)向左平移2个单位长度得到点A′,则点A′的坐标是(4−2,2),即(2,2),故选:C.【点睛】本题考查坐标的平移变化,用到的知识点为:左右平移只改变点的横坐标,左减右加.2、C【详解】(1)∵△ABM≌△CDM,△ABM、△CDM都是等边三角形,∴∠ABM=∠AMB=∠BAM=∠CMD=∠CDM=∠DCM=60°,AB=BM=AM=CD=CM=DM,又∵MA⊥MD,∴∠AMD=90°,∴∠BMC=360°−60°−60−90°=150°,又∵BM=CM,∴∠MBC=∠MCB=15°;(2)∵AM⊥DM,∴∠AMD=90°,又∵AM=DM,∴∠MDA=∠MAD=45°,∴∠ADC=45°+60°=105°,∠ABC=60°+15°=75°,∴∠ADC+∠ABC=180°;(3)延长BM交CD于N,∵∠NMC是△MBC的外角,∴∠NMC=15°+15°=30°,∴BM所在的直线是△CDM的角平分线,又∵CM=DM,∴BM所在的直线垂直平分CD;(4)根据(2)同理可求∠DAB=105°,∠BCD=75°,∴∠DAB+∠ABC=180°,∴AD∥BC,又∵AB=CD,∴四边形ABCD是等腰梯形,∴四边形ABCD是轴对称图形.故(2)(3)(4)正确.故选C.3、C【解析】根据关于原点的对称点,横、纵坐标都变成相反数解答.【详解】解:∵点A(﹣4,3),点A与点B关于原点对称,∴点B(4,﹣3).故选:C.【点睛】本题考查了关于原点对称的点的坐标,熟记“关于原点的对称点,横、纵坐标都变成相反数”是解题的关键.4、B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,,故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.5、C【分析】由题意可知小明所走的路线为一个正多边形,根据多边形的外角和进行分析即可求出答案.【详解】解:正多边形的边数为:360°÷18°=20,∴路程为:15×20=300(米).故选:C.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.6、D【分析】根据正比例函数y=2kx过二,四象限,判断出k的取值范围,然后可得k-2和1-k的取值范围,即可判断①②③,解方程组,根据分式有意义的条件即可判断④.【详解】解:由图像可得正比例函数y=2kx过二,四象限,∴2k<0,即k<0,∴k-2<0,1-k>0,∴函数y=(k-2)x+1-k过一,二,四象限,故③正确;∵k-2<0,∴函数y=(k-2)x+1-k是单调递减的,即y随x的增大而减小,故①错误;∵1-k>0,∴图像与y轴的交点在x轴上方,故②正确;解方程组,解得,∴要想让方程组的解成立,则k+2≠0,即k≠-2,故④正确;故正确的是:②③④,故选:D.【点睛】本题考查了一次函数的性质,根据图像得出k的取值范围是解题关键.7、C【解析】根据分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点分别判断可得.【详解】解:①当a=﹣3时,分式无意义,此说法错误;②若x2﹣2kx+9是完全平方式,则k=±3,此说法错误;③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,此说法正确;④在三角形内部到三边距离相等的点是三个内角平分线的交点,此说法正确;⑤当x≠2时(x﹣2)0=1,此说法正确;⑥点(﹣2,3)关于y轴对称的点的坐标是(2,3),此说法错误;故选:C.【点睛】考查分式的值为零的条件,解题的关键是掌握分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点.8、B【分析】根据题意可设平面直角坐标系中任意一点P,其坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y).【详解】解:点P(3,1)关于x轴对称点的坐标是(3,﹣1).故选:B.【点睛】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.9、D【分析】利用全等三角形的判定方法即可判断.【详解】解:∵AB=DE,∠A=∠EDF,∴只要AC=DF即可判断△ABC≌△DEF,∵当AD=CF时,可得AD+DC=DC+CF,即AC=DF,当BC∥EF时,∠ACB=∠F,可以判断△ABC≌△DEF,当∠B=∠E时,可以判断△ABC≌△DEF,故选:D.【点睛】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.10、C【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,据此可得结论.【详解】解:∵点M(3,-2)与点N关于x轴对称,

∴点N的坐标是(3,2).

故选:C.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.二、填空题(每小题3分,共24分)11、13【分析】求出方程组的解得到x与y的值,代入原式利用题中的新定义计算即可.【详解】解:方程组,①+②×1得:9x=108,解得:x=2,把x=2代入②得:y=5,则x※y=2※5==13,故答案为13【点睛】本题考查了解一元二次方程组,利用了消元的思想,消元的方法有:代入消元与加减消元法.12、1.【详解】解:如图,连接AA′、BB′.∵点A的坐标为(0,2),△OAB沿x轴向右平移后得到△O′A′B′,∴点A′的纵坐标是2.又∵点A的对应点在直线y=x上一点,∴2=x,解得x=1,∴点A′的坐标是(1,2),∴AA′=1,∴根据平移的性质知BB′=AA′=1.故答案为1.【点睛】本题考查了一次函数图象上点的坐标特征、坐标与图形变化﹣平移.根据平移的性质得到BB′=AA′是解题的关键.13、=【分析】过A点作,过F点作,可证,得到,再根据面积公式计算即可得到答案.【详解】解:过A点作,过F点作..在与中....,..故答案:=【点睛】本题主要考查了三角形的全等判定和性质,以及三角形的面积公式,灵活运用全等三角形的判定和性质是解题的关键.14、三角形【分析】根据图形的变化规律:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化即可求解.【详解】观察图形的变化可知:每四个图形为一组,按照正方形、圆、三角形、五角星的顺序循环变化,2019÷4=504…3所以第2019个图形是三角形.故答案为:三角形.【点睛】本题考查了图形的变化类,解决本题的关键是观察图形的变化寻找规律.15、3排2区6号【分析】根据题目提供的例子,直接写出答案即可.【详解】解:∵1排2区3号记作(1,2,3),∴(3,2,6)表示的位置是3排2区6号,故答案为:3排2区6号.【点睛】本题考查了坐标表示位置的知识,解题的关键是能够了解题目提供的例子,难度不大.16、【分析】根据角平分线性质求出OC平分∠AOB,即可求出答案.【详解】∵CD⊥OA于D,CE⊥OB,CD=CE,∴OC平分∠AOB,∵∠AOB=50°,∴∠DOC=∠AOB=25°,故答案为:25°.【点睛】本题考查了角平分线的判定,注意:在角的内部到角的两边距离相等的点在角的平分线上.17、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000032=3.2×;故答案为.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、115cm1.【解析】根据题意作出图形,求出腰上的高,再代入面积公式即可求解.【详解】解:如图所示,作等腰三角形腰上的高CD,∵∠B=∠ACB=15°,

∴∠CAD=30°,

∴CD=AC=×30=15cm,

∴此等腰三角形的面积=×30×15=115cm1,

故答案为:115cm1.【点睛】本题考查的是含30度角的直角三角形的性质、等腰三角形的性质以及三角形外角的性质,熟练运用相关性质定理是解题的关键.三、解答题(共66分)19、(1),数轴见解析;(2)-1,0,1,2,3,4【分析】(1)先解不等式组,然后在数轴上表示出即可;(2)根据不等式组的解集写出整数解.【详解】解:由不等式得:,由不等式得:,则不等式组的解集为,将它的解集在数轴上表示出来,如图:(2)∵不等式组的解集为,∴所有整数解为-1,0,1,2,3,4.【点睛】本题是对不等式组的考查,熟练掌握解不等式组是解决本题的关键.20、(1)①详见解析;(2)();(2),理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C作CE⊥CD交DB的延长线于点E,利用同角的余角相等证明∠3=∠4,∠1=∠E,进而证明△ACD≌△BCE,求出DE的长,再利用勾股定理求解即可.(2)过点C作CF⊥CD交BD的延长线于点F,先证∠ACD=∠BCF,再证△ACD≌△BCF,得CD=CF,AD=BF,再利用勾股定理求解即可.【详解】(1)①∵又∵∴∴△ABD是直角三角形②如图①,过点C作CE⊥CD交DB的延长线于点E,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD是直角三角形∴又∵∴∠1=∠E在和中,∴△ACD≌△BCE∴,∴又∵,∴由勾股定理得∴()(2)AD、BD、CD的数量关系为:,理由如下:如图②,过点C作CF⊥CD交BD的延长线于点F,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9和中∴△ACD≌△BCF∴CD=CF,AD=BF又∵∠DCF=90°∴由勾股定理得又DF=BF-BD=AD-BD∴【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.21、(1)答案见解析;(2)答案见解析.【分析】(1)以A或者B为原点,再作与线段AB相等的线段与格点相交于C,连接ABC三点即可(2)作线段AB的中线,中线与格点相交于C,连接ABC三点即可【详解】解:(1)此为所有存在的答案,取其中2个即可(2)此为所有存在的答案,取其中1个即可【点睛】本题考察了几何画图的能力,掌握等腰三角形的性质,按题意作图即可22、(1)见解析;(2)的面积=;(3)若点在上时,,理由见解析;若点在上时,,理由见解析.【分析】(1)利用角平分线的性质,证得,再证得,在中,利用角所对直角边等于斜边的一半即可证得结论;(2)作,先证得,在和中,分别利用角所对直角边等于斜边的一半求得BC和CD的长,从而求得的长,即可求得的面积;(3)分两种情况讨论,点在上和点在上时,采用补短的方法,利用全等三角形的判定和性质即可证明.【详解】(1)在中,,,∴,∵是的角平分线,∴,∴,在中,,,∴,∴;(2)如图2,过点作,由(1)得,∵平分,,,,,在中,,,,,,在中,,,,,,∴的面积;(3)若点在上时,,理由如下:如图3所示:延长使得,连接,,是的角平分线,于点,,,且,是等边三角形,,,在和中,,,,;(3)若点在上时,,理由如下:如图4,延长至,使得,连接,由(1)得,∵于点,∴,∴,∴是等边三角形,,,,即,在和中,,,,,.【点睛】本题是三角形的综合题,考查了全等三角形的判定和性质,等边三角形的判定和性质,角所对直角边等于斜边的一半,三角形面积公式,作出合适的辅助线构造全等三角形是解题的关键.23、(1);(2)6.5;(3)存在,或.理由见详解.【分析】(1)过点C作CD⊥y轴交于点D,从而易证△AOB≌△BDC,进行根据三角形全等的性质及点的坐标可求解;(2)根据勾股定理及题意可求AB的长,然后由(1)及三角形面积公式可求解;(3)由题意可得若使△PAB与△ABC全等,则有两种情况:①若∠ABP=90°,如图1,作CM⊥轴于点M,作PN⊥轴于点N;②若∠BAP=90°,如图2,此时,CA=B,CA∥B,线段B可由线段CA平移得到;进而可求解.【详解】解:(1)过点C作CD⊥y轴交于点D,如图所示:A,B,OA=2,OB=3,△ABC是等腰直角三角形,AB=BC,∠ABC=90°,∠ABO+∠BAO=90°,∠ABO+∠CBD=90°,∠BAO=∠CBD,又∠AOB=∠CDB=90°,△AOB≌△BDC,BD=OA=2,BO=CD=3,OD=3+2=5,;(2)由(1)可得:OA=2,OB=3,在Rt△AOB中,,;(3)要使△PAB与△ABC全等,则△PAB也为等腰直角三角形,即:①若∠ABP=90°,如图1,作CM⊥轴于点M,作PN

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论