2023-2024学年广东省东莞市粤华学校八上数学期末达标检测试题含解析_第1页
2023-2024学年广东省东莞市粤华学校八上数学期末达标检测试题含解析_第2页
2023-2024学年广东省东莞市粤华学校八上数学期末达标检测试题含解析_第3页
2023-2024学年广东省东莞市粤华学校八上数学期末达标检测试题含解析_第4页
2023-2024学年广东省东莞市粤华学校八上数学期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省东莞市粤华学校八上数学期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.抛一枚硬币10次,有6次出现正面,4次出现反面,则出现正面的频率是()A.6 B.4 C. D.2.若是一个完全平方式,则常数的值是()A.11 B.21或 C. D.21或3.某射击运动员练习射击,5次成绩分别是:8、9、7、8、(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则;②若这5次成绩的中位数为8,则;③若这5次成绩的众数为8,则;④若这5次成绩的方差为8,则A.1个 B.2个 C.3个 D.4个4.如图,已知△ABC与△ADE都是以A为直角顶点的等腰直角三角形,△ADE绕顶点A旋转,连接BD,CE.以下四个结论:①BD=CE;②∠AEC+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.45.尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是()A.SAS B.ASA C.AAS D.SSS6.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G7.已知A、B两地相距12km,甲、乙两人沿同一条公路分别从A、B两地出发相向而行,甲,乙两人离B地的路程s(km)与时间t(h)的函数关系图象如图所示,则两人在甲出发后相遇所需的时间是()A.1.2h B.1.5h C.1.6h D.1.8h8.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,59.下列各数中,无理数的是()A.0 B.1.01001 C.π D.10.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.5 B.0.8 C. D.二、填空题(每小题3分,共24分)11.将函数的图象沿轴向下平移2个单位,所得图象对应的函数表达式为__________.12.若x+y=5,xy=6,则x2+y2+2006的值是_____.13.若直线与直线的交点在轴上,则_______.14.若x+2(m-3)x+16是一个完全平方式,那么m应为_______.15.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结AD,CD.则△ABC≌△ADC的依据是.16.如图,在△ABC中,∠A=35°,∠B=90°,线段AC的垂直平分线MN与AB交于点D,与AC交于点E,则∠BCD=___________度.17.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.18.正七边形的内角和是_____.三、解答题(共66分)19.(10分)如图1,△ABC中,AD是∠BAC的角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=40°,求∠DAE的度数;(2)若∠C>∠B,试说明∠DAE=(∠C-∠B);(3)如图2,若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,请直接回答:(2)中的结论还正确吗?20.(6分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)判断线段AB与OC的位置关系是什么?并说明理由;(3)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.21.(6分)如图,,,(1)求证:;(2)连接,求证:.22.(8分)如图(单位:m),某市有一块长为(3a+b)m、宽为(2a+b)m的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b=1时,绿化的面积.23.(8分)如图,在四边形中,,为的中点,连接,且平分,延长交的延长线于点.(1)求证:;(2)求证:;(3)求证:是的平分线;(4)探究和的面积间的数量关系,并写出探究过程.24.(8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与指挥官的一段对话:记者:你们是用天完成米长的大坝加固任务的,真了不起!指挥官:我们加固米后,采用新的加固模式,这样每天加固长度是原来的倍.通过对话,请你求出该地驻军原来每天加固多少米?25.(10分)如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?26.(10分)解方程:

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据频率的公式:频率=频数÷总数,即可求解.【详解】由题意,得出现正面的频率是,故选:C.【点睛】此题主要考查对频率的理解,熟练掌握,即可解题.2、D【分析】利用完全平方公式的结构特征判断即可得出答案.【详解】∵是一个完全平方式,∴,∴或,故选:D.【点睛】本题主要考查了完全平方公式的运用,熟练掌握相关公式是解题关键.3、A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则,故正确;②若这5次成绩的中位数为8,则可以任意数,故错误;③若这5次成绩的众数为8,则只要不等于7或9即可,故错误;④若时,方差为,故错误.所以正确的只有1个故选:A.【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.4、C【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠CFG=90°,进而得出结论;④由∠BAE+∠EAD+∠DAC+∠BAC=360,即可得出结论.【详解】①∵∠BAC=∠DAE=90°,

∴∠BAC+∠DAC=∠DAE+∠DAC,

即∠BAD=∠CAE.

在△ABD和△ACE中,,

∴△ABD≌△ACE(SAS),

∴BD=CE,∴①正确;

②∵△ABD≌△ACE,∴∠ABD=∠ACE,∵∠BAC=90°,AB=AC,

∴∠ABC=45°,

∴∠ABD+∠DBC=45°.

∴∠ACE+∠DBC=45°,而∠ACE与∠AEC不一定相等,∴②错误;③设BD与CE、AC的交点分别为F、G,∵△ABD≌△ACE,∴∠ABD=∠ACE,∠AGB=∠FGC,

∵∠CAB=90°,

∴∠BAG=∠CFG=90°,

∴BD⊥CE,∴③正确;④∵∠BAE+∠EAD+∠DAC+∠BAC=360,∠EAD=∠BAC=90°,

∴∠BAE+∠DAC=360-90°-90°=180,∴④正确;综上,①③④正确,共3个.故选:C.【点睛】本题考查了等腰直角三角形的性质、旋转变换的性质、全等三角形的判定和性质,解题的关键是灵活运用这些知识解决问题.5、D【解析】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP≌△ODP.故选D.6、A【分析】三角形的重心即为三角形中线的交点,故重心一定在中线上,即可得出答案.【详解】解:如图由勾股定理可得:AN=BN=,BM=CM=∴N,M分别是AB,BC的中点∴直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.7、C【解析】先根据图象求出甲、乙两人的s与t的函数关系式,再联立求出交点坐标即可得出答案.【详解】设甲的s与t的函数关系式为由图象可知,点、在的图象上则,解得故甲的s与t的函数关系式为设乙的s与t的函数关系式为由图象可知,点、在的图象上则,解得故乙的s与t的函数关系式为联立,解得即两人在甲出发后相遇所需的时间为故选:C.【点睛】本题考查了一次函数的实际应用,依据图象求出甲、乙两人的s与t的函数关系式是解题关键.8、C【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选C.【点睛】本题主要考查了三角形三边关系的运用,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;D.,是整数,属于有理数.故选:C.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.10、C【分析】连接AD,由勾股定理求出DE,即可得出CD的长.【详解】解:如图,连接AD,则AD=AB=3,

由勾股定理可得,Rt△ADE中,DE=,

又∵CE=3,

∴CD=3-,

故选:C.【点睛】本题考查了勾股定理的运用,由勾股定理求出DE是解决问题的关键.二、填空题(每小题3分,共24分)11、【解析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将函数y=3x的图象沿y轴向下平移1个单位长度后,所得图象对应的函数关系式为:y=3x−1.故答案为:y=3x−1.【点睛】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.12、1【分析】根据x+y=5,xy=6,利用完全平方公式将题目中的式子变形即可求得所求式子的值.【详解】解:∵x+y=5,xy=6,∴x2+y2+2006=(x+y)2−2xy+2006=52−2×6+2006=25−12+2006=1,故答案为:1.【点睛】本题考查了完全平方公式,利用完全平方公式将题目中的式子变形是解题的关键.13、1【分析】先求出直线与y轴的交点坐标为(0,1),然后根据两直线相交的问题,把(0,1)代入即可求出m的值.【详解】解:当x=0时,=1,则直线与y轴的交点坐标为(0,1),把(0,1)代入得m=1,故答案为:1.【点睛】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.14、-1或7【详解】∵x+2(m-3)x+16是一个完全平方式,∴,∴m=-1或7.故答案是:-1或715、SSS【解析】试题分析:根据作图得出AB=AD,CD=CB,根据全等三角形的判定得出即可.解:由作图可知:AB=AD,CD=CB,∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故答案为SSS.考点:全等三角形的判定.16、1【分析】根据直角三角形的性质可得∠ACB=55°,再利用线段垂直平分线的性质可得AD=CD,根据等边对等角可得∠A=∠ACD=35°,进而可得∠BCD的度数.【详解】∵∠A=35°,∠B=90°,∴∠ACB=55°,∵MN是线段AC的垂直平分线,∴AD=CD,∴∠A=∠ACD=35°,∴∠BCD=1°,故答案为:1.【点睛】此题主要考查了直角三角形的性质,以及线段垂直平分线的性质,关键是掌握在直角三角形中,两个锐角互余,线段垂直平分线上任意一点,到线段两端点的距离相等.17、17,144,145【分析】由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.【详解】解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,继续观察可知弦-股=1,利用勾股定理假设股为m,则弦为m+1,所以有,解得,,即第8组勾股数为17,144,145.故答案为17,144,145.【点睛】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可.18、900°【分析】由n边形的内角和是:180°(n-2),将n=7代入即可求得答案.【详解】解:七边形的内角和是:180°×(7-2)=900°.

故答案为:900°.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式:n边形的内角和为180°(n-2)是解此题的关键.三、解答题(共66分)19、(1)∠DAE=15°;(2)见解析;(3)正确.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再根据角平分线的定义求得∠BAD的度数,在△ABE中,利用直角三角形的性质求出∠BAE的度数,从而可得∠DAE的度数.

(2)结合第(1)小题的计算过程进行证明即可.

(3)利用三角形的外角等于与它不相邻的两个内角之和先用∠B和∠C表示出∠A′DE,再根据三角形的内角和定理可证明∠DA′E=(∠C-∠B).【详解】(1)∵∠C=80°,∠B=40°,∴∠BAC=180°-∠B-∠C=180°-40°-80°=60°,∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=30°,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=50°,∴∠DAE=∠BAE-∠BAD=20°;(2)理由:∵AD是∠BAC的角平分线,∴∠BAD=∠CAD=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,∵AE⊥BC,∴∠AEC=90°,∴∠BAE=90°-∠B,∴∠DAE=∠BAE-∠BAD=(90°-∠B)-(90°-∠B-∠C)=∠C-∠B=(∠C-∠B);(3)(2)中的结论仍正确.

∵∠A′DE=∠B+∠BAD=∠B+∠BAC=∠B+(180°-∠B-∠C)=90°+∠B-∠C;在△DA′E中,∠DA′E=180°-∠A′ED-∠A′DE=180°-90°-(90°+∠B-∠C)=(∠C-∠B).【点睛】本题考查了三角形的角平分线和高,三角形的内角和定理,三角形的外角性质等知识,注意综合运用三角形的有关概念是解题关键.20、(1)与相等的角是;(2),证明详见解析;(3)与的度数比不随着位置的变化而变化,【分析】(1)根据两直线平行,同旁内角互补可得、,再根据邻补角的定义求出即可得解;(2)根据两直线的同旁内角互补,两直线平行,即可证明;(3)根据两直线平行,内错角相等可得,再根据角平分线的定义可得,从而得到比值不变.【详解】(1)∴又与相等的角是;(2)理由是:即(3)与的度数比不随着位置的变化而变化平分,【点睛】本题考查了平行线的性质,掌握平行线的性质以及判定定理是解题的关键.21、(1)证明见解析;(2)证明见解析.【分析】(1)由,则∠AED=∠BEC,即可证明△ADE≌△BCE,即可得到AD=BC;(2)连接DC,由(1)得,,则,再根据,即可得到答案.【详解】(1)证明:∵∴在和中,∵∴≌(),∴;(2)如图,连接,由≌,得,∵,∴,∵,∴.【点睛】本题考查了全等三角形的判定与性质,以及等腰三角形性质,正确找出三角形全等的条件是解题的关键.22、(5a2+3ab)m2,198m2【分析】首先列出阴影部分的面积的表达式,再化简求值.【详解】解:绿化的面积为(3a+b)(2a+b)-(a+b)2=(5a2+3ab)m2当a=6,b=1时,绿化的面积为5a2+3ab=5×62+3×6×1=198(m2)【点睛】本题运用列代数式求值的知识点,关键是化简时要算准确.23、(1)详见解析;(2)详见解析;(3)详见解析;(4);详见解析【分析】(1)根据AAS证明,再由全等三角形的性质得到结论;(2)先证明得到△ABF是等腰三角形,从而证明,再根据得到结论;(3)先证明AE=EF,再结合△ABF是等腰三角形,根据三线合一得到结论;(4)根据三线合一可得S△ABE=S△BEF,再根据S△BEF=S△BCE+S△CEF和得到结论.【详解】(1)证明:∵,∴,,∵为的中点,∴,在和中,∴,∴;(2)证明:∵平分,∴,由(1)知,∴,∴△ABF是等腰三角形,∴由(1)知,∴;(3)证明:由(1)知,∴,由(2)知,∴是等腰底边上的中线,∴是的平分线;(4)∵△ABF是等腰三角形,BE是中线,(已证)∴S△ABE=S△BEF,又∵S△BEF=S△BCE+S△CEF,(已证),∴S△BEF=S△BCE+S△ADE,∴.【点睛】考查了全等三角形的判定和性质、等腰三角形的“三线合一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论