九师联盟商开大联考2024届高一数学第一学期期末检测模拟试题含解析_第1页
九师联盟商开大联考2024届高一数学第一学期期末检测模拟试题含解析_第2页
九师联盟商开大联考2024届高一数学第一学期期末检测模拟试题含解析_第3页
九师联盟商开大联考2024届高一数学第一学期期末检测模拟试题含解析_第4页
九师联盟商开大联考2024届高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九师联盟商开大联考2024届高一数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.总体由编号为01,02,…,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第7行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第8行的随机数表274861987164414870862888851916207477011116302404297979919624512532114919730649167677873399746732263579003370A.11 B.24C.25 D.202.已知点,,,则的面积为()A.5 B.6C.7 D.83.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.4.已知设alog30.2,b30.2,c0.23,则a,b,c的大小关系是()A.abc B.acbC.bac D.bca5.函数零点的个数为()A.4 B.3C.2 D.06.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天7.已知直线和直线,则与之间的距离是()A. B.C.2 D.8.已如集合,,,则()A. B.C. D.9.已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.a>b>c B.b>c>aC.c>a>b D.a>c>b10.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.已知函数是定义在上奇函数.且当时,,则的值为A. B.C. D.212.已知向量,,,若,,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.14.若函数y=loga(2-ax)在[0,1]上单调递减,则a的取值范围是________15.已知函数若方程恰有三个实数根,则实数的取值范围是_______.16.函数的定义域为__________________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设函数是定义在R上的奇函数.(Ⅰ)求实数m的值;(Ⅱ)若,且在上的最小值为2,求实数k的取值范围.18.已知函数的部分图象如图所示.(1)求函数的解析式,并求它的对称中心的坐标;(2)将函数的图象向右平移个单位,得到的函数为偶函数,求函数,的最值及相应的值.19.如图,动物园要建造一面靠墙的两间相同的矩形熊猫居室,如果可供建造围墙的材料总长是用宽(单位)表示所建造的每间熊猫居室的面积(单位);怎么设计才能使所建造的每间熊猫居室面积最大?并求出每间熊猫居室的最大面积?20.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.21.已知函数(1)若是偶函数,求a的值;(2)若对任意,不等式恒成立,求a的取值范围22.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据题意,直接从所给随机数表中读取,即可得出结果.【详解】由题意,编号为的才是需要的个体;由随机数表依次可得:,故第四个个体编号为25.故选:C【点睛】本题考查了随机数表的读法,注意重复数据只取一次,属于基础题.2、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A3、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键4、D【解析】由指数和对数函数单调性结合中间量0和1来比较a,b,c的大小关系即可有结果.【详解】因为,,所以故选:D5、A【解析】由,得,则将函数零点的个数转化为图象的交点的个数,画出两函数的图象求解即可【详解】由,得,所以函数零点的个数等于图象的交点的个数,函数的图象如图所示,由图象可知两函数图象有4个交点,所以有4个零点,故选:A6、B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.7、A【解析】利用平行线间的距离公式计算即可【详解】由平行线间的距离公式得故选:A8、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.9、D【解析】由对数和指数函数的单调性比较大小即可.【详解】因为,所以故选:D10、A【解析】由与互相推出的情况结合选项判断出答案【详解】,由可以推出,而不能推出则“”是“”的充分而不必要条件故选:A11、B【解析】化简,先求出的值,再根据函数奇偶性的性质,进行转化即可得到结论【详解】∵,∴,是定义在上的奇函数,且当时,,∴,即,故选B【点睛】本题主要考查函数值的计算,考查了对数的运算以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题12、C【解析】计算出向量的坐标,然后利用共线向量的坐标表示得出关于实数的等式,解出即可.【详解】向量,,,又且,,解得.故选:C.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标表示,考查计算能力,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.14、(1,2)【解析】分类讨论得到当时符合题意,再令在[0,1]上恒成立解出a的取值范围即可.【详解】令,当时,为减函数,为减函数,不合题意;当时,为增函数,为减函数,符合题意,需要在[0,1]上恒成立,当时,成立,当时,恒成立,即,综上.故答案为:(1,2).15、【解析】令f(t)=2,解出t,则f(x)=t,讨论k的符号,根据f(x)的函数图象得出t的范围即可【详解】解:令f(t)=2得t=﹣1或t(k≠0)∵f(f(x))﹣2=0,∴f(f(x))=2,∴f(x)=﹣1或f(x)(k≠0)(1)当k=0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,即f(f(x))﹣2=0无解,不符合题意;(2)当k>0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1无解,f(x)无解,即f(f(x))﹣2=0无解,不符合题意;(3)当k<0时,做出f(x)的函数图象如图所示:由图象可知f(x)=﹣1有1解,∵f(f(x))﹣2=0有3解,∴f(x)有2解,∴1,解得﹣1<k综上,k的取值范围是(﹣1,]故答案为(﹣1,]【点睛】本题考查了函数零点个数与函数图象的关系,数形结合思想,属于中档题16、【解析】由,解得,所以定义域为考点:本题考查定义域点评:解决本题关键熟练掌握正切函数的定义域三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由奇函数即可解得,需要检验;(Ⅱ)由得,进而得,令,得,结合的范围求解即可.试题解析:(Ⅰ)经检验成立.(Ⅱ).,设设..当时,成立.当时,成立.当时,不成立,舍去.综上所述,实数的取值范围是.18、(1),对称中心坐标为;(2),此时;,此时.【解析】⑴由图象求得振幅,周期,利用周期公式可求,将点代入解得,求得函数解析式,又,解得的值,可得函数的对称中心的坐标;⑵由题意求出及函数的解析式,又因为,同时结合三角函数的图象进行分析,即可求得最值及相应的值解析:(1)根据图象知,,∴,∴,将点代入,解得,∴,又∵,解得,∴的对称中心坐标为.(2),∵为偶函数,∴,∴,又∵,∴,∴,∴.∵,∴,∴,∴,此时;,此时.点睛:本题考查了依据三角函数图像求得三角函数解析式,计算其对称中心,在计算三角函数值域或者最值时的方法是由内到外,分布求得其范围,最终算得结果,注意这部分的计算,是经常考的内容19、(1)(2)使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150【解析】(1)根据周长求出居室的长,再根据矩形面积公式得函数关系式,最后根据实际意义确定定义域(2)根据对称轴与定义区间位置关系确定最值取法:在对称轴处取最大值试题解析:解:(1)设熊猫居室的宽为(单位),由于可供建造围墙的材料总长是,则每间熊猫居室的长为(单位m)所以每间熊猫居室的面积又得(2)二次函数图象开口向下,对称轴且,当时,,所以使每间熊猫居室的宽为,每间居室的长为15m时所建造的每间熊猫居室面积最大;每间熊猫居室的最大面积为150点睛:在建立二次函数模型解决实际问题中的最优问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.解决函数应用问题时,最后还要还原到实际问题20、(1)(2)【解析】(1)利用点斜式求得过点A且平行于BC的直线方程.(2)根据中点坐标、线段AB的垂直平分线的斜率求得正确答案.【小问1详解】直线的斜率为,所以过点A且平行于BC的直线方程为.【小问2详解】线段的中点为,直线的斜率为,所以线段AB的垂直平分线的斜率为,所以线段AB的垂直平分线为.21、(1)0(2)【解析】(1)由偶函数的定义得出a的值;(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围【小问1详解】因为是偶函数,所以,即,故【小问2详解】由题意知在上恒成立,则,又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论