




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省抚州市临川一中2023-2024学年数学高一上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某集团校为调查学生对学校“延时服务”的满意率,想从全市3个分校区按学生数用分层随机抽样的方法抽取一个容量为的样本.已知3个校区学生数之比为,如果最多的一个校区抽出的个体数是60,那么这个样本的容量为()A. B.C. D.2.关于不同的直线与不同的平面,有下列四个命题:①,,且,则②,,且,则③,,且,则④,,且,则其中正确命题的序号是A.①② B.②③C.①③ D.③④3.已知直线的方程为,则该直线的倾斜角为A. B.C. D.4.为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为3000万元,在此基础上,以后每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:,,)()A2026年 B.2027年C.2028年 D.2029年5.已知函数,下面关于说法正确的个数是()①的图象关于原点对称②的图象关于y轴对称③的值域为④在定义域上单调递减A.1 B.2C.3 D.46.下列函数中,在其定义域内单调递减的是()A. B.C. D.7.已知扇形的圆心角为,面积为,则扇形的弧长等于(
)A. B.C. D.8.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.9.设当时,函数取得最大值,则()A. B.C. D.10.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线过点.若直线在两坐标轴上的截距相等,求直线的方程______.12.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为__________13.函数的定义域是________14.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.15.圆关于直线的对称圆的标准方程为___________.16.我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________.834159672三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.在一般情况下,隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)满足关系式:.研究表明:当隧道内的车流密度达到辆/千米时造成堵塞,此时车流速度是千米/小时.(1)若车流速度不小于千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到辆/小时),并指出当车流量最大时的车流密度.18.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上的最大值为3,求的值.19.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天2620市场价y元10278120(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.20.已知,,且(1)求的定义域.(2)判断的奇偶性,并说明理由.21.2021年12月9日15时40分,神舟十三号“天宫课堂”第一课开讲!受“天宫课堂”的激励与鼓舞,某同学对航天知识产生了浓厚的兴趣.通过查阅资料,他发现在不考虑气动阻力和地球引力等造成的影响时,火箭是目前唯一能使物体达到宇宙速度,克服或摆脱地球引力,进入宇宙空间的运载工具.早在1903年齐奥尔科夫斯基就推导出单级火箭的最大理想速度公式:,被称为齐奥尔科夫斯基公式,其中为发动机的喷射速度,和分别是火箭的初始质量和发动机熄火(推进剂用完)时的质量.被称为火箭的质量比(1)某单级火箭的初始质量为160吨,发动机的喷射速度为2千米/秒,发动机熄火时的质量为40吨,求该单级火箭的最大理想速度(保留2位有效数字);(2)根据现在的科学水平,通常单级火箭的质量比不超过10.如果某单级火箭的发动机的喷射速度为2千米/秒,请判断该单级火箭的最大理想速度能否超过第一宇宙速度千米/秒,并说明理由.(参考数据:,无理数)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用分层抽样比求解.【详解】因为样本容量为,且3个校区学生数之比为,最多的一个校区抽出的个体数是60,所以,解得,故选:B2、C【解析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断.【详解】对于①,若,,且,显然一定有,故正确;对于②,因为,,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错;对于③,若,//且//,则一定有,故③正确;对于④,,,且,则与的位置关系不定,故④错故正确的序号有:①③.故选C【点睛】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题.3、B【解析】直线的斜率,其倾斜角为.考点:直线的倾斜角.4、B【解析】设经过年之后,投入资金为万元,根据题意列出与的关系式;1亿元转化为万元,令,结合参考数据即可求出的范围,从而判断出选项.【详解】设经过年之后,投入资金为万元,则,由题意可得:,即,所以,即,又因为,所以,即从2027年开始该市全年用于垃圾分类的资金超过1亿元.故选:B5、B【解析】根据函数的奇偶性定义判断为奇函数可得对称性,化简解析式,根据指数函数的性质可得单调性和值域.【详解】因为的定义域为,,即函数为奇函数,所以函数的图象关于原点对称,即①正确,②不正确;因为,由于单调递减,所以单调递增,故④错误;因为,所以,,即函数的值域为,故③正确,即正确的个数为2个,故选:B.【点睛】关键点点睛:理解函数的奇偶性和常见函数单调性简单的判断方式.6、B【解析】根据函数的单调性确定正确选项【详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B7、C【解析】根据圆心角可以得出弧长与半径的关系,根据面积公式可得出弧长【详解】由题意可得,所以【点睛】本题考查扇形的面积公式、弧长公式,属于基础题8、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象9、D【解析】利用辅助角公式、两角差的正弦公式化简解析式:,并求出和,由条件和正弦函数的最值列出方程,求出的表达式,由诱导公式求出的值【详解】解:函数(其中,又时取得最大值,,,即,,,故选:10、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】根据已知条件,分直线过原点,直线不过原点两种情况讨论,即可求解【详解】解:当直线过原点时,斜率为,由点斜式求得直线的方程是,即,当直线不过原点时,设直线的方程为,把点代入方程可得,故直线的方程是,综上所述,所求直线的方程为或故答案为:或.12、【解析】以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体为圆锥,圆锥的底面半径,母线长,该几何体的表面积为:.故答案为13、##【解析】利用对数的真数大于零可求得原函数的定义域.【详解】对于函数,,解得,故函数的定义域为.故答案为:.14、(答案不唯一)【解析】由题意,只需找一个奇函数,0不在定义域中即可.【详解】由题意,为奇函数且,则满足题意故答案为:15、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题16、8【解析】三阶幻方,是最简单的幻方,由1,2,3,4,5,6,7,8,9.其中有8种排法492、357、816;276、951、438;294、753、618;438、951、276;816、357、492;618、753、294;672、159、834;834、159、672故答案为:8三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值约为3250辆/小时,车流密度约为87辆/千米.【解析】(1)把代入已知式求得,解不等式可得的范围(2)由(1)求得函数,分别利用函数的单调性和基本不等式分段求得最大值,比较可得【详解】解:(1)由题意知当(辆/千米)时,(千米/小时),代入得,解得所以当时,,符合题意;当时,令,解得,所以综上,答:若车流速度不小于40千米/小时,则车流密度的取值范围是.(2)由题意得,当时,为增函数,所以,等号当且仅当成立;当时,即,等号当且仅当,即成立.综上,的最大值约为3250,此时约为87.答:隧道内车流量的最大值约为3250辆/小时,此时车流密度约为87辆/千米.【点睛】关键点点睛:本题考查函数模型的应用,对于已经给出函数模型的问题,关键是直接利用函数模型列出方程、不等式或利用函数性质求解18、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.19、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3)【解析】(1)根据函数的单调性选取即可.(2)把点代入中求解参数,再根据二次函数的最值求解即可.(3)参变分离后再求解最值即可.【详解】(1)随着时间x的增加,y的值先减后增,而所给的三个函数中和显然都是单调函数,不满足题意,∴选择.(2)把点代入中,得,解得,∴当时,y有最小值故当纪念章上市10天时,该纪念章的市场价最低,最低市场价为70元,(3)由题意,令,若存在使得不等式成立,则须,又,当且仅当时,等号成立,所以.【点睛】本题主要考查了二次函数模型解决实际问题的题型,需要根据题意求解对应的二次函数式再分析最值与求参数.属于中等题型.20、(1);(2)偶函数,理由见解析.【解析】(1)根据对数的真数大于零可求得和的定义域,取交集可得定义域;(2)整理可得,验证得,得到函数为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国视频处理器行业发展运行现状及投资战略规划报告
- 中国招商引资模式行业竞争格局分析及投资规划研究报告
- 中国电子吊钩称市场供需现状及投资战略研究报告
- 中国乡村产业振兴行业发展运行现状及投资策略研究报告
- 八年级英语期末复习计划安排
- 2025年OCA光学胶行业市场趋势分析报告
- 长期合同个人原因辞职报告范文
- 2025年java mysql 面试题及答案
- 办公室2025年度工作方案
- 2022-2027年中国江西省房地产行业发展监测及投资方向研究报告
- 现场仪表维修课件
- 时空地理行业可信数据空间建设指引
- 创新人才考试试题及答案
- 中国乙型肝炎病毒母婴传播防治指南(2024年版)解读
- 天津市和平区五十五中2025届数学八下期末调研试题含解析
- 《医疗机构工作人员廉洁从业九项准则》解读
- 医学科研成果转化实践分享
- 新疆阿魏野生抚育种植技术规范-公示稿
- 2025-2030中国有机硅胶行业发展趋势与前景展望战略研究报告
- 中医体质养生之养生保健操课件
- 2025年安全生产考试题库(有限空间作业安全)真题及答案
评论
0/150
提交评论