江西省抚州市临川区二中2024届数学高一上期末预测试题含解析_第1页
江西省抚州市临川区二中2024届数学高一上期末预测试题含解析_第2页
江西省抚州市临川区二中2024届数学高一上期末预测试题含解析_第3页
江西省抚州市临川区二中2024届数学高一上期末预测试题含解析_第4页
江西省抚州市临川区二中2024届数学高一上期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川区二中2024届数学高一上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的部分图象如图所示,则,的值分别是()A.2, B.2,C.4, D.4,2.已知全集,集合,图中阴影部分所表示的集合为A. B.C. D.3.下列说法正确的是()A.若,则B.若,则C.若,则D.若,则4.为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为3000万元,在此基础上,以后每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:,,)()A2026年 B.2027年C.2028年 D.2029年5.已知函数则()A.- B.2C.4 D.116.设,若,则的最小值为A. B.C. D.7.根据表中的数据,可以断定方程的一个根所在的区间是()x-101230.3712.727.3920.09A. B.C. D.8.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或9.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R10.函数的图象大致为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知直线,则与间的距离为___________.12.函数的零点为______13.若,且,则上的最小值是_________.14.设一扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是_____.15.若点在函数的图象上,则的值为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)当时,函数恒有意义,求实数的取值范围;(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由17.化简下列各式:;18.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图(1)所示;产品的利润与投资的算术平方根成正比,其关系如图(2)所示(注:利润和投资的单位均为万元)图(1)图(2)(1)分别求,两种产品的利润关于投资的函数解析式(2)已知该企业已筹集到18万元资金,并将全部投入,两种产品的生产①若平均投入两种产品的生产,可获得多少利润?②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?19.已知函数是定义在上的偶函数,当时,(1)求的解析式;(2)解不等式20.已知向量,(1)若,求的值;(2)若,,求的值域21.已知为锐角,,(1)求和的值;(2)求和的值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据图象的两个点、的横坐标,得到四分之三个周期的值,得到周期的值,做出的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果【详解】解:由图象可得:,∴,∴,又由函数的图象经过,∴,∴,即,又由,则故选:B【点睛】本题考查由部分图象确定函数的解析式,属于基础题关键点点睛:本题解题的关键是利用代入点的坐标求出初相.2、A【解析】由题意可知,阴影部分所表示的元素属于,不属于,结合所给的集合求解即可确定阴影部分所表示的集合.【详解】由已知中阴影部分在集合中,而不在集合中,故阴影部分所表示的元素属于,不属于(属于的补集),即.【点睛】本题主要考查集合表示方法,Venn图及其应用等知识,意在考查学生的转化能力和计算求解能力.3、C【解析】运用作差法可以判断C,然后运用代特殊值法可以判断A、B、D,进而得到答案.【详解】对A,令,则.A错误;对B,令,则.B错误;对C,因为,而,则,所以,即.C正确;对D,令,则.D不正确.故选:C.4、B【解析】设经过年之后,投入资金为万元,根据题意列出与的关系式;1亿元转化为万元,令,结合参考数据即可求出的范围,从而判断出选项.【详解】设经过年之后,投入资金为万元,则,由题意可得:,即,所以,即,又因为,所以,即从2027年开始该市全年用于垃圾分类的资金超过1亿元.故选:B5、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.6、D【解析】依题意,,根据基本不等式,有.7、D【解析】将与的值代入,找到使的,即可选出答案.【详解】时,.时,.时,.时,时,.因为.所以方程的一个根在区间内.故选:D.【点睛】本题考查零点存定理,函数连续,若存在,使,则函数在区间上至少有一个零点.属于基础题.8、C【解析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C9、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理10、A【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.12、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题13、【解析】将的最小值转化为求的最小值,然后展开后利用基本不等式求得其最小值【详解】解:因为,且,,当且仅当时,即,时等号成立;故答案为:14、2【解析】设扇形的半径为r,圆心角的弧度数为,由弧度制下扇形的弧长与面积计算公式可得,,解得半径r=2,圆心角的弧度数,所以答案为2考点:弧度制下扇形的弧长与面积计算公式15、【解析】将点代入函数解析式可得的值,再求三角函数值即可.【详解】因为点在函数的图象上,所以,解得,所以,故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)不存在,理由见解析【解析】(1)结合题意得到关于实数的不等式组,求解不等式,即可求解,得到答案;(2)由题意结合对数函数的图象与性质,即可求得是否存在满足题意的实数的值,得到答案【详解】(1)由题设,对一切恒成立,且,∵,∴在上减函数,从而,∴,∴的取值范围为;(2)假设存在这样的实数,由题设知,即,∴,此时,当时,,此时没有意义,故这样的实数不存在【点睛】关键点点睛:本题主要考查了对数函数的图象与性质的应用,以及复数函数的单调性的判定及应用,其中解答中熟记对数函数的图象与性质,合理求解函数的最值,列出方程求解是解答的关键17、(1)1;(2).【解析】直接利用对数的运算性质求解即可;直接利用三角函数的诱导公式求解即可【详解】;.【点睛】本题考查了三角函数的化简求值,考查了三角函数的诱导公式及对数的运算性质,是基础题.18、(1),;(2)当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【解析】(1)设投资为万元(),设,,根据函数的图象,求得的值,即可得到函数的解析式;,(2)①由(1)求得,,即可得到总利润.②设产品投入万元,产品投入万元,得到则,结合二次函数的图象与性质,即可求解【详解】(1)设投资为万元(),,两种产品所获利润分别为,万元,由题意可设,,其中,是不为零的常数所以根据图象可得,,,,所以,(2)①由(1)得,,所以总利润为万元②设产品投入万元,产品投入万元,该企业可获总利润为万元,则,令,则,且,则,当时,,此时,当,两种产品分别投入2万元,16万元时,可使该企业获得最大利润,最大利润为万元【点睛】本题主要考查了函数的实际应用问题,其中解答中能够从图象中准确地获取信息,利用待定系数法求得函数的解析式,再结合二次函数的图象与性质是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题19、(1);(2).【解析】(1)利用偶函数的定义可求得函数在上的解析式,综合可得出函数的解析式;(2)令,则所求不等式可变为,求出的取值范围,可得出关于的不等式,解之即可.【小问1详解】解:因为数是定义在R上的偶函数,当,,则当时,,.因此,对任意的,.【小问2详解】解:由(1)得,所以不等式,即,令,则,于是,解得,所以,得或,从而不等式的解集为20、(1)(2)【解析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论